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Abstract

This technical report describes a working prototype of gigapixel 3D
camera that can record the scene surface normal and diffuse albedo
at the resolution of 1.6 giga pixels. The system is built upon Mi-
crosoft Apsara camera by equipping an LED frame for measuring
the target scene under varying lighting conditions. From a set of
ultra-high resolution images with shading variations, our method
recovers a surface normal field of the scene. We describe a calibra-
tion procedure for enabling this setup and analyze the error bound
of the measurement system. Experimental results are shown to ver-
ify the effectiveness of our gigapixel 3D camera.

Keywords: gigapixel camera, three dimensional imaging, photo-
metric stereo, surface normal, light calibration

1 Introduction

The pursuit of high-quality imaging has been active for many years
because it serves as foundation of any applications that use im-
ages as their basis. Recently, ultra high-resolution camera sys-
tems started to gain attention, and several inspiring results have
been shown. For example, Microsoft Research Asia’s 1.6 gigapix-
el camera, Apsara, has been used for preservation of cultural her-
itages [Ben-Ezra 2010; Microsoft 2010b; Lu et al. 2012], Google
Art Project has recorded drawings and sculptures from 151 col-
lections in 40 countries at brush-stroke level detail [Google 2011],
the Gigapxl Project is compiling a coast-to-coast portrait of Ameri-
ca [Flint 2000], and GigaPan EPIC camera systems that can record
multi-gigapixel panoramas are in the market [CMU et al. 2006].

At the same time, three dimensional (3D) imaging has been a sub-
ject of much research with the advancement of 3D display technolo-
gies. There are largely two types of approaches in 3D imaging. One
is a geometric approach that computes depth by triangulation from
corresponding views of the same scene point in multiple images
/ structured lighting (e.g., Kinect [Microsoft 2010a], PMVS [Fu-
rukawa and Ponce 2010] and DualSL [Wang et al. 2016]). The ge-
ometric methods well capture the rough shape of a scene, but gener-
ally cannot recover high-frequency shape details well. In contrast to
the geometric approach, photometric methods where shading vari-
ations are exploited compute per-pixel surface orientation instead
of sparse depth. It has been shown that the photometric approaches
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are able to recover high-frequency shape details (e.g., [Zhang et al.
2012]).

In this report, we study the design of an ultra high-resolution 3D
imaging system that can record the scene appearance and shape at
a resolution of giga pixels. We employ a photometric approach and
Microsoft Apsara gigapixel camera for achieving the goal. Namely,
we use photometric stereo approach originally proposed by Wood-
ham [Woodham 1980] and Silver [Silver 1980]. The photometric
stereo method recovers surface normal of a scene from a set of im-
ages recorded under varying lightings. The original method uses
a distant lighting assumption and recovers surface normal from as
few as three observations. We extend the method to a perspective
lighting model where scene points receive irradiance from different
angles for achieving precise measurement. The resulting system is
capable of recording the scene surface normal and albedo in per-
pixel manner.

2 Related work

Our work focuses on building an ultra high-resolution 3D imaging
system. A light calibration method is also proposed to fulfill the
task. We therefore focus our discussion in related technologies in
the followings.

Gigapixel camera. In recent years, researchers have proposed
some schemes to build a camera which can capture an ultra high-
resolution image, such as: using large format lens, and sequentially
scanning a large image plane like Apsara and [Wang and Heidrich
2004], or capturing large frames on film which will be later scanned
to produce digital images [Flint 2000]; camera arrays [Nomura
et al. 2007; Wilburn et al. 2005; Brady and Hagen 2009]; mono-
centric optics and curved sensors [Cossairt et al. 2011]; stitching
images into a mosaic [CMU et al. 2006]. The strengths of Apsara
are low cost both for manufacturing and each use, fast speed and
high Pixels Per Inch (PPI).

3D imaging. There are many ways to obtain 3D information of
an object [Whler 2009], such as conventional stereo, shape from
shading, structured light, photometric stereo, and hybrid methods
integrating two or more methods. All of these methods have the
potential to be adopted to generate high-resolution 3D images. In
our work, we adopted photometric stereo method for its ability for
recording high-frequency details.

Our work is similar to [Lu et al. 2013]. The difference is that they
used traditional photometric stereo which assumes directional illu-
mination so that they could only capture small targets; actually they
only used part of full-frame of Apsara (full-frame refers to the use
of all pixels at maximum width and height to capture the entire field
of view; if they captured large targets, the lights should be put far
away from the targets to satisfy the directional illumination assump-
tion so that the imaging setup would need much large room, which
is not always satisfied when the space is limited, e.g., when in a
cave), while in our work we use full-frame to create gigapixel im-
ages, then this assumption does not stand, instead we used nearby
light photometric stereo which accounts for light fall-off and spatial
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Figure 1: Gigapixel 3D camera. We equipped Microsoft Research
Asia’s 1.6 gigapixel camera with 16 LEDs to realize nearby light
photometric stereo.

variations of light directions.

Light calibration. The light direction/intensity is usually cali-
brated from a mirror/diffuse sphere by observing the peak intensity
of the reflection on the sphere in traditional photometric stereo s-
cenario. However, because our lights are placed near to each other,
projections of them onto a mirror sphere are near, and then obtain-
ing accurate light directions becomes difficult; meanwhile, our re-
quirement of accuracy is higher than traditional photometric stereo
because the nearer the lights are, the more important efficiently dif-
ferentiating them is. Readers are directed to [Xu and Wallace 2008]
and [Wong et al. 2008] for broad overviews of existing light calibra-
tion methods. These methods either need complicated steps, or set a
goal that accuracy requirement is not high. In contrast, our method
uses only one checkerboard and simple operations but maintains
high accuracy. Though the method is developed for our gigapixel
camera case, it can be easily generalized for common cameras.

3 Imaging setup

We first describe the imaging setup. Our system consists of Ap-
sara [Microsoft 2010b] and 16 controllable Cree XLamp XM-L
LEDs. Fig. 1 shows images of the Apsara equipped with the LED
frame.

The lens of Apsara is Schneider Optics Apo Symmar L 480/8.4
whose distortion is small (distortion at 90% image range is 0.1%
barrel). “480/8.4” means that focal length of the lens is 480[mm]
and the minimum F -number of the aperture is 8.4. Apsara uses a
CCD sensor back of Lumenera Corp. The CCD sensor’s resolu-
tion is 4008 × 2672 and the pixel size is 9[µm]×9[µm]. Apsara
moves the sensor back in the imaging plane so that it records a s-
ingle perspective gigapixel image by stitching the recorded images.
By assuming a thin lens model, the distance u from the lens to the
object (object distance) and the distance v from the lens to the im-
age (image distance) relate to the focal length of the lens fl as

1

u
+

1

v
=

1

fl
, (1)

which is known as the thin lens formula (or Gaussian lens formu-
la) [Steinhaus 1999]. If the ratio u/v is known, both u and v can
be calculated. From the object distance u and image distance v, we
can compute the Depth of Filed (DOF) and Field of View (FOV) of

the camera system. The near limit of DOF DN and the far limit of
DOF DF are computed [Jacobson et al. 2000] by

DN =
uf2
l

f2
l +Nc(u− fl)

(2)

and

DF =
uf2
l

f2
l −Nc(u− fl)

, (3)

where N is the F -number of the aperture, and c is the diameter of
Circle of Confusion (CoC) that equals to 0.024[mm] in our sys-
tem. Actually, DOF of Apsara is very shallow, e.g., when ob-
ject distance u = 1600[mm], (DN − DF )@F8.4 = 3[mm],
(DN −DF )@F16 = 6[mm], and (DN −DF )@F64 = 24[mm].
Apsara has a capability of focus stacking for recording a scene that
has a depth variation greater than the DOF, i.e., DOF can be ex-
tended by focus stacking. For further details of the Apsara camera,
readers are referred to [Ben-Ezra 2010; Microsoft 2010b].

Our system precisely controls LEDs in synchronization with sen-
sor exposures. For each sensor back location, our system records
the target scene under different LED lightings (can be multiplexed
illumination [Schechner et al. 2003]). The light intensity of LEDs
is not isotropic, as with any real-world LEDs, which requires extra
care; the light intensity is strongest in one direction and decreases
in other directions. In addition, to achieve a compact lighting frame
which is smaller than the target scene, it is needed to consider a per-
spective illumination effect where under illumination of one LED
scene points receive lights from different directions.

4 Shape recording

Let us denote a 3D light source position as s ∈ R3 and location of
a scene point P as x ∈ R3. The light vector from point P to the
light source becomes l = s − x. With a Lambertian assumption,
observed intensity i at point P can be described as following with
including a light fall-off factor ‖l‖2:

i = E
l>(ρn)

‖l‖3 , (4)

where E is the light source intensity at a unit distance at this partic-
ular direction. From a set of n observations (n ≥ 3) under varying
lightings l1, . . . , ln emitted from different light sources s1, . . . , sn,
the albedo-scaled surface normal at point P can be computed as

ρn = (L>)†i, (5)

where † denotes a Moore-Penrose pseudo inverse operator,

L =
[
E1

l1
‖l1‖3

E2
l2
‖l2‖3

. . . En
ln
‖ln‖3

]
, (6)

and i =
[
i1 i2 . . . in

]>
. (7)

With calibrated L, it gives a unique solution; however, knowing
accurate light vectors is difficult because light intensities and the
relative positions of each scene point and the lights are required. In
the following, we describe a method to calibrate the lightings in an
assumed depth range and assess its accuracy.

4.1 Light calibration

The problem of light calibration is non-trivial in our case. As de-
scribed above, because of the perspective lighting model and non-
uniform distribution of lightings, lighting direction and intensity



need to be calibrated with respect to a scene point location. In other
words, the light configurations (incident angle and strength) vary
with the scene point. It is unrealistic to perform calibration for the
whole 3D space in the depth range where the target will be placed.
This section describes a practical approach of light calibration in
this setting and next section assesses its performance.

Our light calibration uses a diffuse checkerboard pattern. By ob-
serving the checkerboard pattern at a certain 3D location under a
certain lighting condition, our method associates the observed in-
tensity with the surface normal ng that is geometrically computed
from the checkerboard pattern. More specifically, we solve for the
lighting vector using Eq. (4) with the known surface normal, giv-
en m surface normal directions (m ≥ 3, corresponding to varying
poses of the checkerboard pattern). For computing the lighting vec-
tors L at a scene point P , we use the pseudo inverse of the surface
normal matrix

[
n
(g)
1 . . .n

(g)
m

]
as

ρL> = [i1 . . . im]
[
n
(g)
1 . . . n(g)

m

]†
, (8)

where [i1 . . . im] is n×m and each column consists of observation-

s of the checkerboard at one pose under n lights,
[
n
(g)
1 . . . n

(g)
m

]
is

3 ×m containing surface normal of the checkerboard at m poses,
and L is 3×n and each column is lighting information of one light.
Note that here we assume that the sensor response is linear. In case
the sensor response is non-linear, there exist a number of method-
s for performing the radiometric calibration [Debevec and Malik
2008]. We cannot separate the diffuse albedo ρ from the light ma-
trix L; however, this ambiguity is not an issue because all the light
matrices are scaled by the same diffuse albedo ρ of the checker-
board pattern. For creating the observation matrix [i1 . . . im], we
select pixels corresponding to white grids on the checkerboard pat-
tern.

To obtain the geometric surface normals ng , calibration of intrinsic
parameters of the camera is needed. We use the Camera Calibra-
tion Toolbox for Matlab [Bouguet 2007] because of its simplicity.
By observing the known checkerboard pattern from the calibrated
camera, we can compute the surface normal of the checkerboard
from the rotation matrix R ∈ R3×3 of the extrinsics by

ng = R[0 0 1]>. (9)

Since it is not practical to perform the light calibration for all pos-
sible scene points in the target area, we use an approximate calibra-
tion approach; calibration is performed at sub-sampled locations in
the target area as depicted in Fig. 2, and the lighting matrix L is
interpolated for the rest of scene points. The accuracy of this cali-
bration approach relates to the density of sampled calibration loca-
tions, interpolation method, the size and location of the target, and
intensity of light emissions towards different directions. We perfor-
m simulations to study the effect of these factors to the calibration
accuracy.

4.2 Error analysis

To assess the performance of the light calibration procedure, we
conduct simulations using the setup depicted in Fig. 2. In the sim-
ulation, we place the light sources equally distributed on a circle
which is perpendicular to the optical axis and whose center is at
the optical center of the camera. In Table 1, we summarize the
fixed settings and variables that are used in the simulation. To sim-
ulate the quantization effect using the quantization bits γ, we let
the brightest intensity observation be 2γ − 1. We also simulate the
non-uniform directional distribution of the light emittance using a
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Figure 2: Illustration of light calibration. In photometric stere-
o, we vary light directions to recover surface normal; in our light
calibration, we vary surface normal to obtain light direction. By
observing the checkerboard at a certain 3D location under a cer-
tain lighting condition, we can recover light intensity and direction
by varying the orientation of the checkerboard. Calibration is per-
formed at sub-sampled locations in the target area denoted as ×
and is interpolated at the left locations.Typical error map 
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Figure 3: A typical angular error map when sampling mode is 3×3
in the xy-slice.

quadratic curve where the emittance becomes a% at 30◦ off from
the z-axis (the peak emittance is aligned to the z-axis).

We use as variables the number of sub-sampled calibration location-
s {nw, nh, nd}, target depth d and thickness ∆d, and interpolation
method I for the light matrix interpolation (each element of light
matrix is interpolated independently.). By varying these variables,
we observe the error bounds of the surface normal sensing.

Fig. 3 shows a typical error map when sampling mode, nw × nh ×
nd, is 3×3× some number. In the simulation, the error is computed
as the angular difference in degree between the computed surface
normal and the ground truth. Naturally, it has a tendency that the
error of pixels near the calibrated locations becomes smaller as the
figure depicts.

Fig. 4 shows the effect of interpolation methods when d =
2000[mm] (∆d is the thickness of the head) and sampling mode
is 5× 5× 3. By selecting an appropriate interpolation method, we
can reduce the error. The nearest neighbor interpolation ‘nearest’
performs the worst, and ‘tricubic’ interpolation improves the result
compared with the ‘trilinear’ interpolation. The difference between
the ‘tricubic’ and ‘tri-cubic-spline’ is minor in terms of accuracy;
however, we found that ‘tri-cubic-spline’ consistently performs s-
lightly better than ‘tricubic’ interpolation with a similar computa-
tional cost.



Table 1: List of constants and variables in our simulation.

Constant Description Value

N Number of lights 3
r Radius of light frame 100mm
a Relative light emittance at 30◦ off from z-axis 90%
FOV@D Field of view at depth D 2000× 2000mm2@2000mm
γ Quantization bits 8

Variable Description Value

d The nearest distance from target area to camera (0, 5000mm]
∆d Thickness of target scene along z-axis [0, 1000mm]
nw × nh × nd Number of sub-sampled locations for calibration along x-, y-,and z-axis {3× 3× 3, 5× 5× 3, 9× 9× 3}
I Interpolation method {‘nearest’, ‘trilinear’, ‘tricubic’, ‘tri-cubic-spline’1}
1 ‘tri-cubic-spline’ means cubic spline interpolation in three dimensional space.
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Figure 4: Comparison of interpolation methods. Below each nor-
mal map except ground truth are angular error maps. The numbers
on the error maps show mean angular errors of normal estimates
(unit: degree).
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Figure 5: Comparison of different sampling modes, nw × nh ×
nd = {3× 3× 3, 5× 5× 3, 9× 9× 3, and per-pixel calibration
}. The numbers on the error maps show mean angular errors of
normal estimates (unit: degree).

Fig. 5 shows the comparison of applying different sampling modes
when d = 2000[mm] (∆d is the thickness of the bunny) and I
is ‘tri-cubic-spline’. The rightmost column ‘per-pixel calib.’ indi-
cates the ideal configuration where the calibration is performed at
the pixel density; i.e., the error source is only quantization. From
the results, we can observe that denser calibration sampling yield-
s a better result and that sparse sampling can achieve reasonably
accurate result, e.g. 5× 5× 3.

Fig. 6 shows the error variations with different d and ∆dwhen sam-
pling mode is set to 3× 3× 3 and I is set to ‘tri-cubic-spline’. The
vertical axis is the mean angular error of 300000 points with visible
surface normals randomly distributed in the depth range [d, d+∆d].
Understanding the expected error variations is useful for the choice
of the target distance d and target thickness ∆d. As we can see
from the plots, one tendency is that the error becomes smaller with
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Figure 6: Angular error changes with d and ∆d, unit: mm.

a smaller ∆d, which is because when ∆d is larger, sampling den-
sity becomes sparser and the light fall-off matters more; this be-
comes particularly significant when the target distance d is small.
Another general tendency is that when the target distance d is large
(e.g., when d > 1000[mm] in the plots), the error becomes larger
with a larger d, which is because the relative baseline of the light
frame becomes smaller when d is larger, then the shading varia-
tions under different lights become smaller, and then error caused
by pixel intensity’s quantization matters more (readers are referred
to [Wang et al. 2015] where small baseline photometric stereo is
analytically analyzed); on the other hand, when d is small (e.g.,
when d < 1000[mm] and ∆d ≥ 500[mm] in the plots), error be-
comes larger with smaller d, which is because light fall-off matters
strongly.

4.3 Light calibration of gigapixel 3D camera

This subsection describes technical details of the light calibration
of our gigapixel 3D camera. Shallow DOF makes our camera cal-
ibration a non-trivial problem because locations of checkerboard
can only have small variations in depth which degenerates the cal-
ibration problem. We instead calibrate image distance and camera
center individually and then use Camera Calibration Toolbox for
Matlab [Bouguet 2007] to calibrate other intrinsic parameters.

Shallow DOF can be used for obtaining the ratio u/v (cf. (1)):
set the aperture to F8.4 (DOF is 3mm when object distance u is
1600[mm]), put a flat paper on which there is a line in focus (ex-
tremely shallow DOF makes sure that the focused line is parallel
to the imaging plane), and then because the lens distortion is small,
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Figure 7: Vignetting when aperture is set to F8.4 and the quadratic
fitting results in red channel with estimated image center denoted
as +.

u/v approximately equals to the ratio between the length of the line
in the paper and the length of the line in the imaging plane which
is the number of pixels × 9[µm]. After knowing u/v, combining
Eq. (1), we can solve u and v simultaneously. We obtain the focal
length of the camera fcam by setting fcam = v (note that focal
length of our lens is 480[mm] and focal length defined in Camer-
a Calibration Toolbox for Matlab is image distance from effective
thin lens’s center to image plane).

The image center (Cx, Cy) is estimated by locating the center of an
optical effect, vignetting [Lin and Low 1990]. We put a uniformly
illuminated light box in front of the lens and fit a quadratic model
to the vignetting effect as

I(x, y) = a0 + a1y + a2x+ a3xy + a4y
2 + a5x

2. (10)

The image center is then computed as

Cx =
a1a3 − 2a2a5
4a5a4 − a23

,

Cy =
a1a3 − 2a1a4
4a5a4 − a23

. (11)

Fig. 7 shows an image of recorded vignetting at F8.4 and the
quadratic fitting results in red channel. Other intrinsic parameter-
s of the camera is calibrated using Camera Calibration Toolbox for
Matlab by setting the estimates of fcam and (Cx, Cy) as known pa-
rameters. We choose to use F64 (DOF = 24[mm]) when capturing
checkerboard at various locations.

Finally, light calibration is performed by capturing a checkerboard
at a location but varying poses for each LED lighting condition. We
obtain surface normal of the checkerboard by recovering extrinsic
parameters (see Eq. (9)). We choose to use F16 for a just suffi-
cient DOF (= 6[mm]) with a short exposure time. Fig. 8 shows an
image of a checkerboard when the aperture is F16. Though the
checkerboard is out of focus, the corner extractions still performs
reliably.

5 Real-world experiments

Fig. 9 shows a typical imaging setup. Target is placed 1.6[m] (ob-
ject distance u = 1.6[m]) away from the camera, when Pixels Per
Inch (PPI) is 46092

930/25.4
= 1259 pixels/inch. The full-frame is di-

vided into 15 × 16 tiles (Fig. 10), and the sensor back is moved
to capture the target tile by tile. After calibration, we first tried
photometric stereo in some tiles (Fig. 10, 11 and 12). Because of
high PPI, in Fig. 12, we can see the brush-strokes and the texture

Figure 8: Corner extraction when the measured checkerboard is
out of focus under F16, DOF = 6[mm].

FOV@1.6[m]: 930[mm] × 660[mm], Resolution: 46092 × 32732 pixels   

Figure 9: Imaging setup. Gigapixel camera equipped with an LED
frame is used to capture a painting 1.6[m] in front.

of the watercolor painting clearly, which cannot be seen from a 2D
photo. Then we tried gigapixel 3D imaging, and the albedo map
and surface normal map are shown in Fig. 13 and Fig. 14 respec-
tively. Comparing both figures, we see that fine 3D structures are
captured which are unobvious in traditional 2D image. Because of
ultra-high resolution, even small convex protuberance with diame-
ter 0.59[mm] can be recorded. The time cost for a full-frame 3D
imaging is: there are two parallel work threads, a capturing thread
and a saving thread; in the capturing thread, the time of one capture
is t + 0.55[s], where t is exposure time; in the saving thread, if
only RAW file is saved when it is the quickest, the time is 0.15[s];
therefore, the cost time T is dependent on the capturing thread; the
time cost in all is

T = (t+ 0.55)× (15× 16)×N × S [s], (12)

where N is number of lights and S is number of focal stacks. After
obtaining the surface normal, we can do relighting using virtual
lights (see Fig. 15).

6 Discussions and future work

Our prototype shows a capability of recording fine details of the
scene geometry at a gigapixel resolution. It is enabled by a pho-
tometric stereo approach that gives pixel-wise estimate of scene
surface normal. We believe that this setup is useful for applica-
tions where precise shape recording is needed, e.g., digital archive
of cultural heritages. We can obtain depth map from the focus s-
tacking via edges/texture sharpness analysis, which is depth from
focus [Jarvis 1983]. The proposed system is complementary to it
and therefore they can be naturally put together for achieving high-
quality sensing. Namely, depth from focus gives coarse shape in-



Figure 11: Photometric stereo in a tile: a buddha statue (58[mm]×44[mm]) and its normal map.

Figure 12: Photometric stereo in a tile: a watercolor painting (55[mm]×40[mm]) and its normal map. Notice that we can see the 3D
structure of the brush-strokes and texture clearly.

Figure 10: Photometric stereo results in some tiles in full-frame
which is composed of 15× 16 tiles in total.

formation, and it can be augmented by a per-pixel and gigapixel
resolution surface normal map.
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Figure 13: Gigapixel albedo map of a painting.
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Figure 14: Gigapixel surface normal map of the painting.



Figure 15: Relighting results. Images are rendered by virtual lighting based on recovered surface normal and albedo information.
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