
Photometric Stereo with Small Angular Variations

Jian Wang¹, Yasuyuki Matsuhita², Boxin Shi³, Aswin C. Sankaranarayanan¹ ¹Carnegie Mellon Univ., ²Osaka Univ., ³Singapore Univ. of Technology and Design

Proposed Device

Contributions

We provide a specific dependence of the error on system parameters like

- radius of the light ring r (error $\propto 1/r^2$)
- the number of lights $n (error \propto 1/n)$
- variance of measurement noise σ^2 (error $\propto \sigma^2$)
- the mismatch between real depth d and light calibrated depth \hat{d}

This allows us to study the impact of various design factors on the system's performance

- tradeoff between camera quality/price (σ),
 compactness (r), acquisition time (n), and power (n)
- prediction of the range of the depth where error is tolerable
- confidence map of the system's performance

Sensing model

A Lambertian scene point P at the location $\mathbf{x} \in \mathbb{R}^3$ with a surface normal $\mathbf{n} \in \mathbb{R}^3$ and diffuse albedo ρ shows an intensity i under a point light source at the location $\mathbf{s} \in \mathbb{R}^3$ as:

$$i = \frac{\mathbf{l}^{\top}}{\|\mathbf{l}\|^3} \rho \mathbf{n}$$
, where $\mathbf{l} = \mathbf{s} - \mathbf{x}$

Given $n (\geq 3)$ different lightings, we have

$$\begin{bmatrix} i_1 & i_2 & \cdots & i_n \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \mathbf{l}_1 & \mathbf{l}_2 & \cdots & \mathbf{l}_n \\ \|\mathbf{l}_1\|^3 & \|\mathbf{l}_2\|^3 & \cdots & \|\mathbf{l}_n\|^3 \end{bmatrix}^{\mathsf{T}} (\rho \mathbf{n})$$

$$\begin{split} \mathbf{i} \in \mathbb{R}^n \text{ - intensity measurements, obtained from camera captured photos (known)} \\ \mathbf{L} \in \mathbb{R}^{3 \times n} \text{ - light matrix including light directions and light intensities which} \\ & \text{ can be calibrated (known)} \end{split}$$

```
\boldsymbol{b} \in \mathbb{R}^3 - albedo-scaled surface normal (unknown)
```

$$\Rightarrow$$
 b can be computed as **b** = (LL^T)⁻¹Li

Analysis of the Device

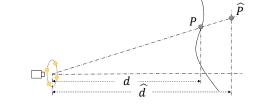
In reality $\hat{\mathbf{b}} = (\hat{\mathbf{L}}\hat{\mathbf{L}}^{\mathsf{T}})^{-1}\hat{\mathbf{L}}\hat{\mathbf{i}}$

 $\hat{\mathbf{i}} = \mathbf{i} + \Delta \mathbf{i}_g$ (due to measurement noise) $\hat{\mathbf{L}}$ deviates from \mathbf{L} (due to depth mismatch) then $\hat{\mathbf{b}}$ differs from the ground truth \mathbf{b}

In the presence of measurement noise

Estimation of **b**: $\hat{\mathbf{b}} = (\mathbf{L}\mathbf{L}^{\mathsf{T}})^{-1}\mathbf{L}\hat{\mathbf{i}} = (\mathbf{L}\mathbf{L}^{\mathsf{T}})^{-1}\mathbf{L}(\mathbf{i} + \Delta \mathbf{i}_{a})$

 $= \mathbf{b} + (\mathbf{L}\mathbf{L}^{\mathsf{T}})^{-1}\mathbf{L}\Delta\mathbf{i}_{a}$

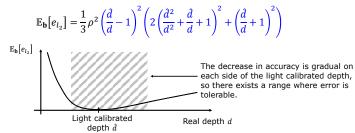

 $\Delta \mathbf{i}_g \in \mathbb{R}^n$ - noise term, random variable (noise is *i.i.d.* with mean 0 and variance σ^2)

Error evaluation: $e_{l_2} = \|\hat{\mathbf{b}} - \mathbf{b}\|^2$ Error expectation: $\mathbb{E}_{\Delta i_c}[e_{l_2}] = \sigma^2 (\sigma^2)$

$$= \sigma^{2}(d^{2} + h^{2})^{3} \frac{2(2d^{2} + h^{2})}{nr^{2}d^{2}}$$

In the presence of calibration error

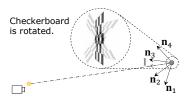
Camera assumes scene point at depth d is at light calibrated depth \hat{d} .


Estimation of **b**: $\hat{\mathbf{b}} = (\hat{\mathbf{L}}\hat{\mathbf{L}}^{\top})^{-1}\hat{\mathbf{L}}\mathbf{i} = (\hat{\mathbf{L}}\hat{\mathbf{L}}^{\top})^{-1}\hat{\mathbf{L}}\mathbf{L}^{\top}\mathbf{b}$

 $\mathbf{L} \in \mathbb{R}^{3 \times n}$ - light matrix of point P

 $\hat{\mathbf{L}} \in \mathbb{R}^{3 \times n}$ - light matrix of point \hat{P}

 $\boldsymbol{b} \in \mathbb{R}^3$ - random variable, uniformly distributed in all directions


Error expectation:

When we have both errors, the expected error is simply linear combination of the two.

LED Camera

Hardware prototype

Experiments

Light calibration method

We obtain the light vector from a light to a location by varying the orientation of a planar checkerboard and imaging it under the light's illumination.

(a) One of the input

(b) Surface normal map

(c) Integrated surface Results of human scene (1m X 0.7m)

Reference

Ondrej Drbohlav and Mike Chantler, "On optimal light configurations in photometric stereo." ICCV 2005