High Resolution 2D Imaging and 3D Scanning with Line Sensors

Thesis Defense

Jian Wang 7/27/2018

Imaging – Key driver of the modern society

Traditional imaging methods are woefully inadequate

- Passive imaging
 - Non-visible light imaging (challenge I)
- Active imaging
 - 3D scanning under strong ambient light (challenge II)
 - 3D scanning under strong global light like in scattering media (challenge III)

with high spatial resolution high temporal resolution low cost

Challenge I: Passive imaging in non-visible wavebands

Challenge I: Passive imaging in non-visible wavebands

SWIR for seeing through fog and night vision

MWIR for high contrast thermal imaging

THz for surveillance

Images courtesy: http://www.sensorsinc.com/gallery/images https://www.edmundoptics.com/resources/application-notes/imaging/what-is-swir/

Per-pixel price

mmW/THz Multiple $10^2 - 10^4$	
LWIR HgCdTe <10 ¹	
Bolometer 10 ⁻²	
MWIR InSb/PbSe 10 ⁻¹	
SWIR InGaAs/PbSe 10 ⁻¹	
NIR/VIS/NUV Si $< 10^{-6}$	
MUV Si (thinned) < 10 ⁻³	
EUV Si-PIN/CdTe $10^2 - 10^3$	
Soft x ray Si (thinned) 10^{-2}	
Si-PIN/CdTe $10^2 - 10^3$	
Hard x ray/gamma Multiple $10^2 - 10^4$	6

Gehm, M. E., and D. J. Brady. "Compressive sensing in the EO/IR." Applied optics 54.8 (2015)

Inexpensive alternative designs for 2D imaging in non-visible wavebands

Point detector with 2D scanning 1D sensor with 1D scanning Point detector with multiplexing

 $R_{galvo} = 5000$ $R_{SLM} = 10^4$, 10 × compression Image resolution $N \times N$

Inexpensive alternative designs for 2D imaging in non-visible wavebands

Inexpensive alternative designs for 2D imaging in non-visible wavebands

Inexpensive alternative designs for 2D imaging in non-visible wavebands

Challenge II: Active imaging under ambient light

- Sunlight is orders of magnitude stronger than active light source
 - Photon noise

Solar energy distribution

Challenge III: Active imaging in scattering medium

Marvin, Minsky. "Microscopy apparatus." U.S. Patent No. 3,013,467. 19 Dec. 1961.

14

Traditional imaging methods are woefully inadequate

- Passive imaging
 - Non-visible light imaging (Challenge I)
- Active imaging
 - 3D scanning under strong ambient light (Challenge II)
 - 3D scanning under strong global light like in scattering media (Challenge III)

Point detector based

- Low cost
- Robust
- Too slow

2D sensor based

- High cost
- Not reliable in harsh envir.
- High ST resolution

Contributions

- Passive imaging
 - Non-visible light imaging
- Active imaging
 - 3D scanning under strong ambient light
 - 3D scanning under strong global light like in scattering media

Line sensor Optics Mechanics Computation

- Benefits
 - Affordable price / High resolution / High-speed readout / Bigger pixel / Have space on top/bottom / Frame transfer...
- Sensing modality
 - Visible light / SWIR / CW-TOF / SPAD / DVS / PSD...

LiSens

2D imaging architecture

Jian Wang, Mohit Gupta, and Aswin C. Sankaranarayanan. "LiSens-A scalable architecture for video compressive sensing." ICCP 2015.

DualSL

3D scanning architecture

Jian Wang, Aswin C. Sankaranarayanan, Mohit Gupta, and Srinivasa G. Narasimhan. "Dual structured light 3d using a 1d sensor." ECCV 2016.

TriLC

Robust proximity sensor

Jian Wang, Joe Bartels, William Whittaker, Aswin C. Sankaranarayanan, and Srinivasa G. Narasimhan. "Programmable Triangulation Light Curtains." ECCV 2018.

High spatial temporal resolution with line sensors

LiSens

2D imaging architecture

Jian Wang, Mohit Gupta, and Aswin C. Sankaranarayanan. "LiSens-A scalable architecture for video compressive sensing." ICCP 2015.

DualSL

3D scanning architecture

lian Wang, Aswin C. Sankaranarayanan, Mohit Gupta, and Srinivasa G. Narasimhan. 'Dual structured light 3d using a 1d sensor." ECCV 2016.

riLC

Robust proximity sensor

Jian Wang, Joe Bartels, William Whittaker, Aswin C. Sankaranarayanan, and Srinivasa G. Narasimhan. "Programmable Triangulation Light Curtains." ECCV 2018 .

High spatial temporal resolution with line sensors

Task: Imaging beyond visible light

- Choice 1: 2D camera Too costly!
- Choice 2: camera based on single pixel
 - Option 1: single pixel + 2D galvomirror
 - Option 2 (better): single pixel + spatial light modulator, Single Pixel Camera

Task: Imaging beyond visible light

- Choice 1: 2D camera Too costly!
- Choice 2: camera based on single pixel
 - Option 1: single pixel + 2D galvomirror
 - Option 2 (better): single pixel + spatial light modulator, Single Pixel Camera

Task: Imaging beyond visible light

- Choice 1: 2D camera Too costly!
- Choice 2: camera based on single pixel
 - Option 1: single pixel + 2D galvomirror
 - Option 2 (better): single pixel + spatial light modulator, Single Pixel Camera

Best result: 128×128 at video rate

22 [Sankaranarayanan et al, Video Compressive Sensing for Spatial Multiplexing Cameras using Motion-Flow Models, arXiv:1503.02727]

Why cannot SPC capture mega-pixel video?

DMD is slow

Calculation

- Mega-pixel video @ 10fps, $10^6 \times 10 = 10^7$ pixels' value
- 10x compressive sensing is used
- Need measurement rate: $\frac{10^7}{10} = 10^6$
 - measurement rate: # of measurements per second
- DMD can only flip 10^4 times per second

Proposed: Replace the single pixel by multiple pixels

Line-Sensor-based compressive camera (LiSens)

1. Use a linear array of pixels (a line-sensor)

Line-Sensor-based compressive camera (LiSens)

Use a linear array of pixels (a line-sensor)
Add a cylindrical lens

Cylindrical lens

Each line-sensor pixel integrates one row of the scene

Each line-sensor pixel integrates one row of the scene

LiSens

Hardware prototype

door

Image resolution: 1024 x 768 Capture duration: 880 ms Compression ratio: 1x

Build two LiSenses in both sides of the DMD

- No light loss
- Joint deblurring

By row-multiplexing LiSens

By column-multiplexing LiSens

Build two LiSenses in both sides of the DMD

Joint deblurring •

By column-multiplexing LiSens

By both LiSenses

Summary of LiSens

- A 2D imaging architecture based on line sensor
 - Min. # of pixels to achieve max. possible measurement rate
 - Cost effective
 - High spatial and temporal resolution

iSens

2D imaging architecture

Jian Wang, Mohit Gupta, and Aswin C. Sankaranarayanan. "LiSens-A scalable architecture for video compressive sensing." ICCP 2015.

DualSL

3D scanning architecture

Jian Wang, Aswin C. Sankaranarayanan, Mohit Gupta, and Srinivasa G. Narasimhan. "Dual structured light 3d using a 1d sensor." ECCV 2016.

rilC

Robust proximity sensor

Jian Wang, Joe Bartels, William Whittaker, Aswin C. Sankaranarayanan, and Srinivasa G. Narasimhan. "Programmable Triangulation Light Curtains." ECCV 2018.

High spatial temporal resolution with line sensors

High Cost of 2D Sensors

SWIR See through scattering media

DVS sensor Highly efficient 3D sensor

Structured Light 3D Imaging Using 1D Sensor? - Yes

Conventional structured light

Proposed: Dual structured light (DualSL)

No moving parts

DualSL using Gray codes

Data acquired by the 1D sensor

Depth map

3D visualizations

48

Hardware prototype

3D visualizations of DualSL results

Years OW

Traditional SL with 2D sensor

Difference map

DualSL with 1D sensor

RMSE = 1.49mm

Traditional SL with 2D sensor

Difference map

10

DualSL with 1D sensor

RMSE = 2.4mm

Traditional SL with 2D sensor

Difference map

DualSL with 1D sensor

RMSE = 3.7mm

Difference map

Traditional SL with 2D sensor

DualSL with 1D sensor

Analysis: Acquisition Speed

DualSL

Traditional SL

Same acquisition speed

Summary of DualSL

- Structured light 3D scanning architecture with line sensor
 Cost effective
- Same performance as traditional SL
 - Temporal resolution
- Better performance
 - Spatial resolution
 - Under ambient light
 - Under global light

LiSens

2D imaging architecture

Jian Wang, Mohit Gupta, and Aswin C. Sankaranarayanan. "LiSens-A scalable architecture for video compressive sensing." ICCP 2015.

DualSL

3D scanning architecture

lian Wang, Aswin C. Sankaranarayanan, Mohit Gupta, and Srinivasa G. Narasimhan. 'Dual structured light 3d using a 1d sensor." ECCV 2016.

TriLC

Robust proximity sensor

Jian Wang, Joe Bartels, William Whittaker, Aswin C. Sankaranarayanan, and Srinivasa G. Narasimhan. "Programmable Triangulation Light Curtains." ECCV 2018 .

High spatial temporal resolution with line sensors

Task: detect object at specific depth (proximity sensor)

- Workable under strong sunlight
- Cost effective
- Energy efficient
- Computationally efficient

Task: see through scattering media

With smoke

- High spatial-temporal resolution
- Cost effective
- Energy efficient
- Computationally efficient

Proposed: light curtain device

Applications

Light Curtains for Robots

Light Curtains for Vehicles

Vehicle lane monitoring

Top view

Hardware prototype

Hardware prototype

Illumination System

Imaging System

Cosine light curtain

Light Curtain

Scene

Imaged Curtain

Volume light curtain

Ζ 6m and a first a first a first start of a first a 2m 1m -1m X

Light Curtain

Scene

Imaged Curtain

Tilted curtain outdoors in cloudy day

Light Curtain

Scene

Imaged Curtain

Planar curtain outdoors under strong sunlight

Light Curtain

Scene

Imaged Curtain

Backup detection – Vertical curtain

Π – Curtain for vehicle lane monitoring

Scattering media (fog, smoke...)

Light curtain imaging

Planar light curtain in smoke

Light Curtain

Scene

Imaged Curtain

Performance – 100klux

Depth Map under strong sunlight

Scene

Depth Map

Sunny – 100klux

Thickness

Top view

Thickness

Scene

Light curtain data

Thickness

By triangulation

Phase with wrapping

Triangulation + Phase

Light fall-off

Depth-adaptive energy

Depth-adaptive energy

Summary of TriLC device

- The depth of interest is pre-specified, so the device can be optimized accordingly
 - Cost, energy, computation low
 - Workable under sunlight, in thick smoke/fog 'high'
 - Flexible: shape, thickness
 - Fast
- 'Limitation': only depth of interest

LiSens

2D imaging architecture

Jian Wang, Mohit Gupta, and Aswin C. Sankaranarayanan. "LiSens-A scalable architecture for video compressive sensing." ICCP 2015.

DualSL

3D scanning architecture

Jian Wang, Aswin C. Sankaranarayanan, Mohit Gupta, and Srinivasa G. Narasimhan. "Dual structured light 3d using a 1d sensor." ECCV 2016.

TriLC

Robust proximity sensor

Jian Wang, Joe Bartels, William Whittaker, Aswin C. Sankaranarayanan, and Srinivasa G. Narasimhan. "Programmable Triangulation Light Curtains." ECCV 2018.

High spatial temporal resolution with line sensors

Conclusion remarks

- Traditional methods
 - Passive imaging in non-visible wavebands
 - Active imaging in strong ambient light and global light
 - Point detector based: cheap, robust but too slow
 - 2D sensor based: fast but costly, not reliable
- This thesis: <u>High resolution</u> 2D imaging and 3D scanning with <u>line sensors</u>
 - Cheap, robust and fast
 - LiSens: 2D imaging architecture
 - DualSL: 3D scanning architecture
 - TriLC: robust proximity sensor and see-thru-smoke imager

Thanks the committee

- Vijayakumar Bhagavatula
- Mohit Gupta
- Aswin Sankaranarayanan (advisor)
- Srinivasa Narasimhan (advisor)

Future work

- TriLC with multiple line lasers
 - Eye-safety distance is same as light curtain usage distance
 - Interference problem is solved
- Triangulation gating + temporal gating for seeing through scattering media
 - Spatial cue and temporal cue
- Outdoor real-time photometric stereo
 - One rolling-shutter camera and two aligned line light and the Sun
- Incorporating machine learning
 - LiSens with fast reconstruction
 - DualSL with less patterns
 - TriLC with adaptively assigning lines

Line sensor vs. low-res 2D sensor array

If misalignment...

Frame transfer No light loss during readout

Sequential exposure and readout Without frame transfer

Simultaneous exposure and readout With frame transfer

Laser Safety

0.72m

