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Abstract

Global context is crucial for 3D point cloud scene understanding tasks. In this
work, we extend the contextual encoding layer that was originally designed for 2D
tasks to 3D point cloud scenarios. The encoding layer learns a set of code words in
feature space of the 3D point cloud to characterize the global semantic context, and
then based on these code words, the method learns a global contextual descriptor to
reweight the feature maps accordingly. Moreover, compared to 2D scenarios, data
sparsity becomes a major issue in 3D point cloud scenarios, and the performance
of contextual encoding quickly saturates when the number of code words increases.
To mitigate this problem, we further propose a group contextual encoding method,
which divides the channel into groups and then performs encoding on group-divided
feature vectors. This method facilitates learning of global context in grouped
subspace for 3D point clouds. We evaluate the effectiveness and generalizability
of our method on three widely-studied 3D point cloud tasks. Experimental results
have shown that the proposed method outperformed the VoteNet remarkably with
3 mAP on the benchmark of SUN-RGBD, with the metrics of mAP@0.25, and
a much greater margin of 6.57 mAP on ScanNet with the metrics of mAP@0.5.
Compared to the baseline of PointNet++, the proposed method leads to an accuracy
of 86%, outperforming the baseline by 1.5%.

1 Introduction

Object detection in 3D point clouds is a challenging problem because it requires localizing and
classifying objects from sparse and irregularly-distributed points. Conventional methods such as
PointNet++ [16] and ASIS-PointNet++ [18] were proposed to solve this problem, which can learn
the local features hierarchically. However, due to lack of global context modeling, the performance
of PointNet [15] and PointNet++ [16] is limited. To resolve this issue, LG-PointNet++ [21] and
PointWeb [27] proposed to model the global context by computing the pair-wise relations of points.
However, their complexity is a quadratic function of the number of points, which is prohibitively
expensive when dealing with large-scale point clouds.

On the other hand, for 2D Semantic Segmentation, Zhang et al., [24] proposed a contextual encoding
layer to learn a descriptor to model the global context by encoding features with a dictionary with
only a few code words and then aggregating the encoded information. In this paper, we extend
the encoding approach to 3D point cloud, in which a dictionary containing only a few code words
is learned to characterize the global semantic context, and then based on these code words, the
method learns a global contextual descriptor to reweight the feature maps accordingly. Since the
number of code words is constrained and much smaller than the number of data points, this method
is computationally efficient. However, directly applying the encoding layer to 3D point clouds is
inadequate. Compared to 2D scenarios, data sparsity becomes a major issue in 3D point cloud
scenarios, and the performance of global contextual encoding quickly saturates when the number of
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code words increases. To mitigate this problem, we further propose a Group Contextual Encoding
(GCE) method, which divides the channel into groups and then performs encoding on group-divided
feature vectors, to facilitate effective learning of global context in grouped subspaces for 3D point
clouds.

We evaluate the effectiveness and generalizability of GCE-based method on three widely-studied
3D point cloud tasks. Experimental results have shown that the proposed method outperforms the
VoteNet [13] with 3 mAP on the benchmark of SUN-RGBD [17], by the evaluation metrics of
mAP@0.25, and a much greater margin of 6.57 mAP on a more challenging dataset of ScanNet
[13], by a stricter evaluation metrics of mAP@0.5. We also demonstrate that our method can be
generalized to other tasks like voxel labeling. Compared to the baseline of PointNet++ [16], the GCE
layer leads to an accuracy of 86%, outperforming the baseline by 1.5%, which is the state-of-the-art
performance on this benchmark.

To summarize, this work makes the contributions in the following aspects:

• We extend the contextual encoding layer to 3D point cloud scenarios to better model the global
contextual information efficiently.
• We propose a group contextual encoding method dividing and encoding group-divided feature

vectors to effectively learn global context in grouped subspaces for 3D point clouds.
• The proposed method shows better effectiveness and generalizability on multiple 3D benchmarks

with state-of-the-art performance.

The source code3 has been released to facilitate the reproduction of our results.

2 Related Works

3D Object Detection. The existing paradigms for 3D detection on point clouds can be classi-
fied into three types: the Bird’s Eye View (BEV) based methods, the Voxel based methods, and
PointNet/PointNet++ based methods.

For BEV-based methods [3; 9; 12], the data are firstly projected on the ground plane with the bird’s
eye view and then the conventional convolution networks are applied to generate features and predict
bounding boxes. For Voxel-based methods such as VoxelNet [28; 22; 10], the point clouds are firstly
allocated to regular-sized grid in the 3D Cartesian space. Then the conventional 2D or 3D convolution
neural networks are applied to extract features and predict bounding boxes. However, these methods
inevitably introduce information loss at the initial pre-processing process, making them inadequate
for scenes with cluttered points.

Recently, quantization-free PointNet-based detectors such as VoteNet [13], PointRCNN [11] and
STD [23] are proposed. They can model the point cloud directly from the raw input with Point-
Net/PointNet++ Backbone. Since errors in quantization/projection process can be avoided, these
methods have achieved promising results on 3D objection detection benchmarks such as [17; 4].

Context in 3D point clouds. To further improve the performance, modeling the contextual informa-
tion is needed. The method in [21] is one of the pioneering works in obtaining global context for
point cloud segmentation. But such global context is computed by scanning each pair or local patches
exhaustively, which is computationally expensive for 3D indoor scenes.

Dictionary Learning and Residual Encoding. Dictionary learning typically generates the code-
words according to statistics of the feature descriptor, e.g., K-NN or K-means, in an unsupervised
way. NetVLAD [2] and PointNetVLAD [1] encode features by aggregating the residual between the
code words with hard/soft-assigned weights in an end-to-end manner. Zhang et al., [25; 24] revise
this method by assigning the weight with residuals, so that the code words can be learnt from the
distribution of descriptors. The code words, as well as scaling parameters of weights will be learned
inherently by the network according to the loss function. The global context can also be computed by
aggregating only a few number of code words in the dictionary, which keeps the computational cost
affordable [24].

Group Operations. One of the difficulties in dealing with 3D point cloud is data sparsity. To match
the data sampling density in a 2D scenario, much more data points are needed in the 3D space.

3https://github.com/AsahiLiu/PointDetectron
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Figure 1: Illustration of the proposed method. For features of N input points, represented by vectors
with index i, with the number of channels denoted as C, we first divide it into G groups (in this case
G = 3) and the subspace feature vector of the individual point can be represented by radix g. The
group-divided features will pass through the encoding layer to generate the global descriptor and
then multiply with it channel-wisely to reweight the features (the reweighting process is represented
implicitly by darkened or lightened colors of the vectors). The reweighted grouped features will then
be concatenated back to the original size.

In other words, compared to the 2D scenario, the sampling density is usually much sparser in 3D
scenarios when the number of data samples are comparable. To mitigate this problem, we propose
to learn global context in grouped subspace for 3D point clouds. Group convolution was originally
introduced in AlexNet [8] to load the model in parallel for multiple GPUs. Group has also been
regarded as an extra dimension for deep learning models, such as ResNeXt [20], ShuffleNet [26],
and Group Normalization [19], and the channels are divided into groups. In spite of the similarity
to these methods in form, we designate the grouping approach for the contextual information in 3D
point clouds the first time.

3 Method

Our method can be viewed as an extension of PointNet++ by adding the component of Group
Contextual Encoding (GCE). We first review the structure of PointNet++ and the concept of global
context in Section 3.1 and then introduce the method to yield the global context with GCE in Section
3.2 and finally we propose our GCE-based PointNet++ in Section 3.3 .

3.1 Review of PointNet++ and 2D Encoding Layer

PointNet++ [16] is a typical “Encoder-Decoder” deep learning framework. In the encoding procedure,
a series of Set Abstraction (SA) layers or Point Convolution layers are deployed to extract features
hierarchically, and the number of points is reduced in this process. While in the decoding phase,
the Feature Propagation (FP) decoding layers will be used to up-sample the features and recover
the number of points back to the original input. The architecture can learn the local feature in a
hierarchical manner but it lacks the ability to model the global context.

The encoding layer [24; 25] has originally been proposed for 2D scenarios. The prior information
of context covering the entire image, referred to as global context, can serve as category clues to
facilitate the scene understanding tasks, such as lowering the probability of the car appearing in the
water. The global context is utilized as a global channel descriptor by encoding layer to reweight the
channels. As a result, the useful information can be emphasized while the less meaningful one will be
suppressed, which will lead to better performance. In the following, we will discuss how to acquire
the global context of the 3D point clouds and utilize this information to re-calibrate the features.
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3.2 Group Contextual Encoding Block

In this part, we will introduce our method to reweight the feature channels of point clouds with global
context or global channel descriptor.

The “encoding layer” [24; 25], which is computed based on the residual between the input cloud and
the learned code words can be leveraged for feature re-calibration. Since all points in the scene will
contribute to the computing of the channel descriptor, therefore, this global channel descriptor can be
attributed as “global context”. The code words of [25; 24] are able to cover the problem space and
learned in an end-to-end manner.

The channel-wise importance can be computed by encoding the residual between input point cloud
features and the learned code words and then aggregating on these code words. However, due to data
sparsity in the 3D point cloud scenario, overfitting is encountered when a large number of code words
cover the problem space, which inhibits from gaining better performance by utilizing more code
words. To mitigate this problem, we introduce the method of Group Contextual Encoding (GCE)
Block to yield the global context for better feature representation.

Assume features of the point sets have a size of N × C, where N is the number of the points (a large
number up to 1K to 20K in the scene) and C is the number of channels which is a fixed small number
and C � N . Additionally, channels of the point features are not entirely independent. Because the
similar shapes, textures contribute to interdependent coefficients of the features. The point feature can
therefore be represented by a small number of subspace vectors. In our design, the feature is divided
into G Groups and transformed into a size of N ×G× C

G . The number of the points is equivalently
augmented by G times, which can help to address the issue of data sparsity and facilitate learning
of global context in grouped subspace for 3D point cloud. The sub-space features of points can be
represented by a set of independent vectors dK ,K � N ×G, which are learned in an end-to-end
manner.

The feature of Point Convolution or Set Abstract (SA) layers will be multiplied in each channel with
the global context. As a result, the point features will be empowered by the global contextual priors,
which leads to a better performance. As shown in Figure 1, this is dubbed as the 3D Group Contextual
Encoding block, or GCE block and this constitutes the our design of Group Contextual Encoding
PointNet++ backbone.

3D Group Contextual Encoding Layer. To capture the global contextual feature of the point sets,
we leverage the GCE layer to exploit statistics of the point sets. The encoding layer learns the code
book inherently and then characterize the features according to the residual between the feature and
the code words. The global contextual prior will then be multiplied channel-wisely with the original
feature for re-calibration.

For the feature of the point sets, X ∈ RC×N , X = {X1, ..., XN} , where N is the size of the point
sets and C is number of the channels. We divide channels evenly into G groups, which is illustrated
in Figure 1. G should be a positive divisor of C. The transformed feature can be represented by
X̂ ∈ RC

G×G×N . The code book D = {d1, d2, ..., dK} has K code words to be learned. The residual
rijk = x̂i,j − dk will be weighted and summed by ek =

∑N
i=1

∑G
j=1 eijk.

eijk =
e−sk‖rijk‖

2∑K
k=1 e

−sk‖rijk‖2
rijk. (1)

The scaling factor s is a learnable parameter in the process. To obtain the global context of the
scene, the information of each of individual encoders ek, k = {1, 2, ...,K} will pass through a
combination of Batch Normalization [7] and ReLU operations, denoted with φ, then aggregated with
“sum” operation. This procedure is described using Equation 2.

e =

K∑
k=1

φ(ek). (2)

The computation complexity of whole procedure is O(N ×G×K). Since K and G are small integer
values, this method is computationally economical.

To exploit the aggregated information e, it will pass through a fully connected layer and sigmoid
activation function and be utilized as channel attention, which is similar to [6]. This process is given
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by γ = σ(We), where the σ denotes for the sigmoid activation, and W stands for the weight of the
FC (Fully Connected) layer. The global descriptor γ will be multiplied in each channel with the input
feature X̂ with the channel wise multiplication: Y = X̂ � γ as the modulator of the feature-map.
Which is similar to the method mentioned in SENet [6]. The feature map will be concatenated back
to the size of C ×N finally, as shown in Figure 1.

Relation with prior methods. It should also be noted that whenG = 1, this operation is degenerated
into the encoding layer [24; 25]. This method computes the global context point-wisely and fails to
address the issue of data-sparsity.

We follow EncNet [24] to use G = 1 and K = 0 to denote the “global average pooling” introduced
in SENet [6]. Though this method performs well for the regular-sized and rectangular-shaped 2D
images where the global information can be aggregated on 1× 1 sized centroid, it is not effective for
the 3D point clouds with irregular shape and distribution, as shown by our result in Section 4.

3.3 Group Contextual Encoding PointNet++

The GCE Block can be integrated into a variety of existing point cloud deep learning models. For
example, to extend the original PointNet++ [16] with global context, we build a GCE-PointNet++.
The configuration and architecture will be given in the supplementary material. Compared with
vanilla PointNet++ [16], GCE Block introduced in Section 3.3 replaces the original SA layers as
the building block. For each layer in the encoding phase, the feature will be improved by the global
context aggregated from the feature of the current stage. And we empirically choose the code word
number K = 8 for each of the layers. More details of the configuration can be found in Section 4 and
supplementary material. In contrast with the original PointNet++ [16], the feature from each of the
Point Convolution layers will be integrated with the global context. As a result, better performance
can be achieved.

4 Experiment

4.1 3D Object Detection in Point Clouds

To verify the efficacy of Group Contextual PointNet++, we experiment on VoteNet [13] while use
PointNet++ [16] as the baseline. The model is deployed on the benchmarks of SUN-RGBD [17] and
ScanNet [4]. In experiments, we follow the same protocol in [13] and use the metrics, mean average
precision (mAP), at IoU threshold of 0.25 for evaluation.

Dataset. SUN RGB-D [17] for 3D indoor scene understanding consists of around 10K RGB-D
images annotated with 64, 595 oriented 3D bounding boxes for nearly 40 object categories. In our
experiment, following [13] we split the training/testing set and report 3D detection performance on
the 10 most common categories.

ScanNet [4] provides a wider range of indoor scenes with more densely scanned objects compared
with the SUN RGB-D dataset. We use the 1205 scans for training and 312 scans for testing,
respectively. Vertices from meshes are sampled as the input point clouds. Following the ground truth
annotation mentioned in [13], we predict axis-aligned 3D bounding boxes in these scenarios.

4.1.1 Ablation Studies

We set a series of ablation studies to investigate the components of our methods.

The seed layers of the PointNet++ [16] are dubbed with “SA1,SA2,...,FP1,FP2,...”. To show the
difference from the original PointNet++, for instance, we use the item “SA2′” to represent the
second layer of Group Contextual Encoding Blocks, so is SA3′, SA4′. The FP (Feature Propagation)
operators are kept the same with PointNet++. Therefore, the names of FP layers are unchanged.

Code word numberK. To verify the choice of code word numberK in the dictionary, we conducted
experiment on SA2′ with a series of numbers K = 0, 8, 16, 24, 32. We also choose G = 1, which is
the case of “encoding layer” [25; 24] and the results are shown in Table 1.

It can be shown that the improvement of global average pooling (K = 0, G = 1) is limited, only
0.5 mAP improvement on ScanNet V2 compared with the baseline method of SA2. The global

5



Table 1: Ablation studies of code word number K with SA2′ feature of Group Contextual Encoding
PointNet++ and G is set to be 1. Evaluated with mAP@0.25.

Seed Layer SUN RGB-D V1 ScanNet V2

SA2 51.2 51.2

SA2′ (K = 0, G = 1) 51.9 51.7
SA2′ (K = 8, G = 1) 54.6 53.0

SA2′ (K = 16, G = 1) 54.7 53.1
SA2′ (K = 24, G = 1) 55.5 53.5
SA2′ (K = 32, G = 1) 55.0 53.4

Table 2: Ablation studies of Channel Number, Encoding layer and Grouping method on SUN-RGBD
benchmark. The w/o encoding refers to the cases without encoding, the result of G = 1, noted as w/o
group division and the result of our method, noted as w/ group division as well as “channel shuffle”,
noted as “w/ shuffle” are also listed for comparisons.

SA2/SA2′ layer w/o encoding w/o group division w/ group division w/ shuffle

C × 1 51.2 54.6 55.4 54.4
C × 2 54.0 55.2 56.8 56.1
C × 3 54.2 55.8 57.1 56.3

average pooling widely used for 2D tasks is not effective for the 3D point clouds. This paradox is
easy to explain: unlike 2D images, the distribution and shape of 3D point clouds is irregular, thus the
simple operator of global average pooling is unable to provide a true description for the global scene.
Therefore, it does not perform well for irregular 3D point clouds.

Figure 2: The performance of SA2′ layer w.r.t the
code word numberK on SUN-RGBD and ScanNet
datasets. G is set to be 1.

In theory, the performance will increase with
the code number K based on the assumption
that complex scenes can be better characterized
by exploiting more independent code words. In
practice, we find the performance gets saturated
when K increases from 8 to 32. The encoding
layer [25; 24] can yield only limited improve-
ment by utilizing more code words. For exam-
ple, on the benchmark of ScanNet, it can only
yield limited improvement of 0.5 mAP when
K increases from 8 to 32 (Though the improve-
ment will be slightly higher on SUN-RGBD).
The curve in Figure 2 also illustrates this trend
of saturation. This is due to the “sparsity” of
the point features, 8 code words are enough to
represent the entire scene, therefore we choose
K = 8.

For the following part, we will introduce the
method to boost the performance independent of the code words by exploiting “groups”.

Channel Number. Since the channel will be divided into groups, the effect of this variable needs
to be investigated independently. We conduct the experiments of multiplying the channel number
without incorporating the GCE Block, noted as w/o encoding, the details of the configuration can be
found in the supplementary material. The results in Table 2 show that the performance increases with
a margin of 2.8 mAP and 3.2 mAP when the channel number is multiplied by ×2 and ×3, denoted as
C × 2 and C × 3, respectively. Since the performance gets saturated when the number of channels is
multiplied by ×3, we choose C × 3 as the default setting in the following experiments for optimal
performance.

Comparison with Encoding layer. We also make comparison of performance with encoding layer
[24; 25], denoted by G = 1 or “w/o group division” in Table 2, and our method is denoted by
“w/ group division” in Table 2. Even though the encoding layer will improve the performance, for
example, it yields an increase of 1.6 mAP for the baseline method of “C × 3”, but it is only limited
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Table 3: Comparison with the state-of-the-art algorithm on SUN RGB-D V1 benchmark.
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F-PointNet [14] Geo+RGB 43.3 81.1 33.3 64.2 24.7 32.0 58.1 61.1 51.1 90.9 54.0
VoteNet [13] Geo Only 74.4 83.0 28.8 75.3 22.0 29.8 62.2 64.0 47.3 90.1 57.7
Ours Geo Only 78.1 85.9 33.7 74.7 27.7 35.7 65.7 66.4 51.4 87.7 60.7

success. Our method of “w/ group division” with the choice of G = 12 shows an extra boost of 1.3
mAP in performance. Our method is advantageous over the encoding layer because we can resolve
the data-sparsity issue and facilitate the learning of global context. We choose “C × 3, G = 12,
K = 8” as the default setting in the following experiment. More discussion on the choice of “G” can
be found in the supplementary material.

Grouping Methods. In the experiment, the “Grouping” method follows the rule of “locality” that
for feature of each individual point, the vectors with adjacent channels will be grouped together.
We also compare with the method of “shuffle” [26], denoted by “w/ shuffle”, which can weaken
such constraint of “locality”. But the results given in Table 2 show that no significant performance
improvement is gained when “channel shuffle” is incorporated.

Comparison with SA layer. Table 2 also shows the improvement of our methods compared with
the original SA layer of PointNet++ [16]. For example, for the setting of C × 3, our method has
outperformed the original SA layer with 2.9 mAP. More ablation experiments on different seed layers
will be given in the supplementary material.

As discussed above, we choose “K = 8, C × 3, G = 12” as the default setting for our experiments
in the following sections.

4.1.2 Main Results

In this part, we compare our results with the previous state-of-the-art methods, including VoteNet [13]
and F-PointNet [14], the results show that our methods have outperformed state-of-the-arts methods
on SUN-RGBD [17] and ScanNet [4] benchmarks by a large margin. The visualization of the object
detection results can be found in Figure 3.

The result on SUN-RGBD benchmark can be found in Table 3. Compared with the F-PointNet, our
performance of 60.7 mAP has surpassed it with 6.7 mAP. It should be noted that it is not a fair
comparison for us because the F-PointNet [14] has utilized an additional RGB image as input while
we only use the geometry information as input. Compared with the “Geometry Only” method of

(a) SUN-RGBD (b) ScanNet

Figure 3: Visualization of 3D Detection on SUB-RGBD (a) and ScanNet (b).
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Table 4: Comparison of our method with state-of-the-art methods on ScanNetV2, evaluated with
mAP@0.25.
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3DSIS Geo [5] 12.75 63.14 65.98 46.33 26.91 7.95 2.79 2.3 0.00 6.92 33.34 2.47 10.42 12.17 74.51 22.87 58.66 7.05 25.36
VoteNet [13] 36.27 87.92 88.71 89.62 58.77 47.32 38.10 44.62 7.83 56.13 71.69 47.23 45.37 57.13 94.94 54.70 92.11 37.20 58.65

Ours 38.20 88.34 87.13 84.48 65.24 48.14 41.40 48.00 8.10 60.95 70.17 47.59 46.59 73.60 98.36 59.38 88.23 40.98 60.83

Table 5: Comparison of our method with state-of-the-art methods on ScanNetV2, evaluated with
mAP@0.5.
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3DSIS Geo [5] 5.06 42.19 50.11 31.75 15.12 1.38 0.00 1.44 0.00 0.00 13.66 0.00 2.63 3.00 56.75 8.68 28.52 2.55 14.60
VoteNet [13] 8.07 76.06 67.23 68.82 42.36 15.34 6.43 28.00 1.25 9.52 37.52 11.55 27.80 9.96 86.53 16.76 78.87 11.69 33.54

Ours 8.25 81.41 70.36 70.71 48.13 17.63 17.54 41.30 2.88 30.73 44.62 15.41 29.72 29.68 88.79 25.06 82.87 19.61 40.11

VoteNet [13], the performance of our method has succeeded it with 3 mAP, on a shallower layer of
FP1 and fewer point numbers compared with VoteNet. The discussions on choosing this seed layer
are presented in the supplementary material.

As shown in Table 4, our method has achieved the performance of 60.8 mAP on the benchmark
of ScanNet [4]. This performance has exceeded the original VoteNet [13] with 2.2 mAP. It may
seem to be only a slight improvement, while the evaluation on a stricter metrics, mAP @ IoU 0.5,
illustrated in Table 5 shows that compared with the performance of original VoteNet [13], our method
has outperformed it significantly with 6.57 mAP and reaches the performance of 40.11 mAP on this
benchmark, which demonstrates the efficacy of GCE Block.

4.2 ScanNet Semantic Voxel Labeling

Table 6: ScanNet Voxel Labeling Performance.
Method Accuracy %

PointNet++ [16] 84.5
PointCNN [11] 85.1

LG-PointNet++ [21] 85.3
PointWeb [27] 85.9

Ours 86.0

We evaluate our method on the task of Scan-
Net voxel labeling. We do not incorporate
RGB information, and we follow the same pre-
processing technique, training protocol and eval-
uation method used in [16] for a fair compari-
son. In this experiment, we adopt the setting of
K = 8, C × 3, G = 12 and integrate it with
PointNet++ [16]. The details of the experiment
are introduced in the supplementary materials
and the results are reported in Table 6.

The results show that our result has outper-
formed the baseline method of PointNet++ [16] with an increase of 1.5% in accuracy. It should also
be noted that our method has outperformed other state-of-the-art methods, including PointCNN [11],
LG-PointNet++ [21], and PointWeb [27].

5 Conclusions

We have presented Group Contextual Encoding as an effective method to acquire the global context
in 3D point clouds, and evaluated this method on several prevailing benchmarks of 3D point clouds.
Experimental results have shown that the proposed method outperforms the non-grouping baseline
methods significantly across the board, and demonstrates state-of-the-art performance on these
benchmarks, indicating our method as a compelling alternative to the original “encoding layer” for
global context in 3D Point Clouds.
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Broader Impact

Our “Group Contextual Encoding” can be directly applied to the 3D point cloud scene understanding
tasks including 3D object detection, voxel labeling, and segmentation. Our research can also support
downstream research and applications such as autonomous driving, robotics, and AR/MR. We will
investigate the generalizability of our method to other tasks and frameworks, e.g., Graph Convolution
network, 3D sparse CNNs, where the global context plays a crucial role in these tasks.

On the other hand, this technology may also endanger the employment of human servants and drivers
because they may be replaced by autonomous robots and vehicles, which may cause the potential
social problems. This issue should be taken seriously and measures should be taken for preparation.
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A Overview

This supplementary material provides the details of the experiment in the paper. We introduce the
details of 3D object detection in Section B and details of ScanNet voxel labeling in Section C.

B The Experiment on VoteNet

We introduce the implementation details and additional ablation studies of 3D detection in this part.

B.1 Implementation Details

Architecture. We adopt the framework of VoteNet [2], which can be divided into three parts. The
backbone, voting and clustering module, and proposal module. Only the backbone is replaced with
our method of Group Contextual Encoding PointNet++ (GCE PointNet++) in our experiment.

The configuration of the GCE PointNet++ is shown in Table 1. The numbers are explained as follows.
The GCE layer has a receptive field determined by radius r, MLP network of MLP [c1, ..., ck] and
n subsampled points. These parameters are inherited from SA layers. Additionally, we use K to
represent the number of code words and G to represent the number of groups in the GCE Block. In
short, the GCE layer can be characterized by (n, r,K,G, [c1, ..., ck]). It should also be noticed that
the number of ck is multiplied 3 times in Table 1, which refers to the “C × 3” in our experiment. We
can change the expression of “×3” in the table to “×2” and “×1” to get the configuration of C × 2
and C × 1 respectively.

Feature Propagation (FP) layers upsample the input point sets to output point set via interpolation
and then pass the feature through MLP layers specified by [c1, ..., ck]

Table 1: The configuration of GCE PointNet++ in our experiment of 3D Detection.

Layer Name Input Layer Type Output Size Layer Params

SA1′ Raw Input GCE (2048,3+128×3 ) (2048, 0.2, 8, 12, [64, 64, 128×3])
SA2′ SA1′ GCE (1024, 3+256×3) (1024, 0.4, 8, 12, [128,128,256×3])
SA3′ SA2′ GCE (512, 3+256×3) (512, 0.8, 8, 12, [128,128,256×3])
SA4′ SA3′ GCE (256, 3+256×3) (256, 1.2, 8, 12, [128,128,256×3])
FP1 SA3′, SA4′ FP (512, 3+256×3) [256,256×3]
FP2 SA2′, SA3′ FP (1024, 3+256×3) [256,256×3]

Training and Inference. We adopt the same data augmentation methods with VoteNet [2] . Here
we also adopted the same optimizer, Adam Optimizer [1], which is utilized with an initial learning
rate 0.001. Learning rate is scheduled to be decayed by the factor of 0.1 after 80 epochs and another
∗This work is done in JD AI Research
†Corresponding authors: shiboxin@pku.edu.cn, xiaodong.he@jd.com

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



0.1 after 120 epochs. There are 180 epochs in total, which is the same with VoteNet[2]. The whole
model is trained on a single Nvidia Titan-X GPU.

During inference, the points of the entire scene are taken as the input. With a single shot pass, the
region proposals are generated by the framework and further post-processed by 3D NMS method.

B.2 Additional Ablation Studies

Group Number G. We investigate the performance w.r.t the group number G on the dataset of
SUN-RGBD v1. The G should be an divisor of C and the results are illustrated in Table 2. The items
of the first row of C × 1 , means the channel number is unchanged, has revealed that when G is small,
for instance, G = 2, the performance is close to encoding layer [6; 5], or G = 1. When G is too large,
the Channel per group will be reduced, the improvements by group division will be then dropped.
And the optimal G or defined as G∗ will be an number between 1 and C and in this case is 4.

We also conducted experiments by increasing the output channel 2× and 3×, denoted by C × 2 and
C × 3 in Table 2. It should be noted that 12 is indivisible by C × 2 and C × 1, therefore these items
are blank in the table.

The result shows that the optimal choice of G grows in linear relationship with C. For example,
when channel number is unchanged, the G∗ = 4, and this value is 8, 12 when the channel number is
multiplied 2× and 3× respectively. In this experiment, we choose “C × 3, G = 12 as the default
setting.

Table 2: Ablation studies of Group Number and Channel factor on Sun RGB-D V1, K is set to be 8.

G 1 2 4 8 12 16

C × 1 54.6 54.9 55.4 54.6 _ 54.9
C × 2 55.2 55.5 55.8 56.8 _ 55.4
C × 3 55.8 55.8 55.4 56.7 57.1 57.0

More results w.r.t. K and G. The performance of the original Encoding layer (G = 1) will saturate
quickly with the code words. However, the results in the Table 3 show that our method (C× 3, G = 2
and C × 3, G = 4) can lead to the increase on accuracy without saturation when the number of code
words is increased up to 32.

Table 3: Ablation studies of SA2′ layer w.r.t. G and K on Sun RGB-D V1. C is fixed to be C × 3.
K 8 16 24 32

C × 3, G = 1 55.8 55.5 56.2 55.4
C × 3, G = 2 55.8 56.2 56.4 56.7
C × 3, G = 4 55.4 55.6 56.3 56.6

The performance on different seed layers. Similar to Table 8 of VoteNet [2], we also showed the
performance of different seed layers for the benchmark of SUN-RGBD and ScanNet in Table 4 and in
Table 5 respectively. We can infer from these results that the GCE block can improve the performance
significantly on these benchmarks.

On the benchmark of SUN-RGBD, we found that the performance of FP2 layer is less satisfying
than FP1 layer. Similar result is also shown in the original VoteNet [2] that the performance of FP2
layer is better than FP3 layer, implying FP operation is not an optimal choice for decoding layer. The
methods to design a suitable decoding layer for point convolution could be a future research topic.

Table 4: Ablation studies of PointNet++ and our module with different seed layers, evaluated on
SUN-RGBD

Seed Layer SA2/SA2′ SA3/SA3′ SA4/SA4′ FP1 FP2

PointNet++ 51.2 56.3 55.1 56.6 57.7
Ours 57.1 58.0 59.3 60.7 59.1

∆ 5.9 1.7 4.2 4.1 1.4
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Table 5: Ablation studies of PointNet++ and our module with different seed layers, evaluated on
ScanNet.

Seed Layer SA2/SA2′ SA3/SA3′ SA4/SA4′ FP1 FP2

PointNet++ 51.2 54.3 47.4 56.6 58.6
Ours 56.3 58.3 53.9 59.0 60.8

∆ 5.1 4.0 6.5 2.4 2.2

C Experimental Details on ScanNet Voxel Labeling

In the experiment, we followed the previous data processing methods [3; 4], the points are uniformly
sampled and divided into the block with the size of 1.5m× 1.5m. There are 8192 points sampled
on-the-fly during the training process. The architecture is built upon the Pointnet++ [4], we replace
the SA modules with GCE blocks and choose K = 8, G = 12, C × 3 as the default setting.
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