
3D Photo Stylization:
Learning to Generate Stylized Novel Views from a Single Image

(Supplementary Material)

We refer to the supplementary video on the project web-
page1 for an overview of our results and comparisons with
the baselines. This document describes the implementation
details of our model, the design of our user study, the details
of extending our method to multi-view inputs, a discussion
on the choice of depth estimation models, as well as a dis-
cussion on the limitation and societal impact of our method.

A . Implementation Details
Our model architecture is illustrated in Fig 1. We now

present our implementation details.

Point Cloud Encoder Architecture. Our GCN encoder
adopts a hierarchical design for computational and memory
efficiency. It takes an input RGB point cloud and processes
it in three stages with 1, 2 and 2 MRConv layers [5] respec-
tively. The point features are 64, 128 and 256 dimensional
after each stage. Contrary to [5], our MRConv variant per-
forms point aggregation using ball queries, and we progres-
sively increase the ball radius throughout the encoder to en-
large its receptive field. At the entry of each stage, we apply
farthest point sampling to sub-sample the point cloud by a
factor of 4. A residual connection is introduced every two
layers to facilitate gradient flow during training. We apply
batch normalization [4] after each layer and use ReLU as
the non-linearity.

Stylizer Architecture. Our stylizer follows AdaAttN [7].
We apply AdaAttN once on the relu3 1 features of VGG
to modulate the GCN output since our GCN architecture
loosely mirrors the first three stages of VGG. As discussed
in the main paper, we apply a multi-layer perceptron (MLP)
with two fully-connected layers of 256 units to map con-
tent features to the style feature space before stylization.
A symmetric MLP is applied after stylization to bring the
modulated features back to the content feature space. The
MLPs use ReLU as the non-linearity.

Neural Renderer Architecture. Our neural renderer first
up-samples the 256-dimensional encoder output via inverse
distance weighted interpolation [9] until the output resolu-

1Project page: http://pages.cs.wisc.edu/˜fmu/style3d
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Figure 1. Model architecture. Architecture of our point
cloud encoder and neural renderer. The layer specifications are
as follows: Conv1/2d (input channel, output channel, kernel size,
stride); MRConv (input channel, output channel, maximum num-
ber of neighboring points, ball radius).

tion is the same as the encoder input. Following [9], we set
the fall-off coefficient to 2 and the number of neighbors to 3
in up-sampling. The rasterizer [8] projects the up-sampled
point features to the image plane of a novel view given cam-
era pose and intrinsics. The resulting 2D feature maps have
256 dimensions and are further processed by a U-Net [12]
with three levels. The encoder part of the U-Net down-
samples the feature maps without inflating the channel di-
mension. We interpret this as a learnable anti-aliasing step
in the same spirit as widely used super-sampling in com-
puter graphics. The decoder part subsequently up-samples
the feature maps via transposed convolution and meanwhile
halves the channel dimension. The skip connections, imple-
mented as 1× 1 convs, pass along feature from the encoder
to the decoder to facilitate gradient flow. All layers in the
U-Net except the skip convs have a kernel size of 3× 3. We
apply leaky ReLU with a slope of 0.2 in the encoder and
ReLU in the decoder as the non-linearity.
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Figure 2. Screenshot of our user study. A randomly picked question in our user study.

B . User Study Design

We conduct a user study to compare our method with
baselines that sequentially combine 3DPhoto [13] and one
of the six image [3, 6, 7] or video style transfer meth-
ods [1, 7, 14]. The study includes three sections for the as-
sessment of style quality, multi-view consistency and over-
all synthesis quality. Each section consists of 60 random
binary choice questions that compare our method with one
of the baselines. For convenience, a stylized 3D photo is
displayed as a 90-frame snippet following a random camera
trajectory. For fair evaluation of style quality, we only dis-
play stylized image of the input view so as not to bias par-
ticipants toward more consistent renderings. Similarly, we
hide the content and style images when consistency is eval-
uated to minimize the impact of style quality. Our analysis
is based on a total of 5,400 votes collected from 30 volun-

teers. We show a screenshot of our user study in Fig 2. Our
user study is anonymous and does not involve the collection
of personally identifiable data.

C . Details on Extension to Multi-view Inputs

Extending our method to the multi-view setting is imme-
diate after a small modification on point cloud normaliza-
tion. Now that more than one input views are available, we
back-project all views to a point cloud and transform it into
the NDC space anchored to the center view. Everything else
stays exactly the same, and importantly, the model need not
be re-trained thanks to the normalization step. In our ex-
periments, we use the same depth maps from [2] for a fair
comparison with StyleScene [2]. Those results were shown
in Table 3 and Figure 10 of our main paper.



D . Choice of Depth estimation model
We employ LeReS [15] as the depth estimator at train-

ing time. LeReS can infer scene scale and camera field of
view from an input image. We use it in training to ensure
the plausibility of the synthesized 3D data. Importantly, one
may drop in any depth estimation model at inference time
without re-training other model components thanks to our
proposed point cloud normalization technique. This allows
one to explore the complementary strength of off-the-shelf
depth estimation models on different scene categories or un-
der varying resource constraints. We present stylization re-
sults of the same input image under three state-of-the-art
depth estimation models (DPT [10], LeReS [15] and Mi-
DaS [11]) in Fig 3. Note that depth maps produced by dif-
ferent methods result in slight variation in scene coverage
given the same camera pose.

E . Limitations
Despite steady progress in monocular depth estimation,

current state of the arts do not always produce reliable depth
maps for complex scenes, and in particular for those pixels
near depth discontinuities. Our method relies on monoc-
ular depth estimation on the input image and thus inherits
the failure mode of the underlying depth estimators (Fig 3).
As a partial remedy, we have demonstrated an extension
of our method to use mutli-view inputs with more reliable
depth estimations. Another limitation our method shares
with StyleScene [2] lies in the run-time speed. While our
method renders stylized images of 1K resolution at interac-
tive rate on a TITAN Xp GPU, the current implementation
may not support interactive exploration of a high-resolution
stylized 3D photo on mobile devices. Future work may fo-
cus on improving rendering speed for 3D photo stylization.
Societal impacts: We anticipate that our research would
facilitate new applications of 3D content creation from 2D
photos. Similar to other image manipulation methods like
neural style transfer, our method might face potential copy-
right infringement, when copyright-protected content im-
ages are modified and improperly used.
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Figure 3. Stylization results with different depth estimation models. We employ LeReS [15] as the depth estimator at training time
and show that one may drop in any depth estimation method (DPT [10], LeReS [15] or MiDaS [11]) at inference time without re-training.
One limitation of our method is that it is susceptible to error in depth estimation (red boxes).
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