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Figure 1: Cloud augmentation with imagined animal sketches. We propose a novel pipeline to draw sketches on cloud images
so that the imagination of clouds as animals are visualized. The sketch drawings are naturally aligned with cloud contours.

ABSTRACT
Have you ever looked up at the sky and imagined what the clouds
look like? In this work, we present an interesting task that aug-
ments clouds in the sky with imagined sketches. Different from
generic image-to-sketch translation tasks, unique challenges are
introduced: real-world clouds have different levels of similarity to
something; sketch generation without sketch retrieval could lead
to something unrecognizable; a retrieved sketch from some dataset
cannot be directly used because of the mismatch of the shape; an
optimal sketch imagination is subjective. We propose Cloud2Sketch,
∗Co-corresponding authors.
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a novel self-supervised pipeline to tackle the aforementioned chal-
lenges. First, we pre-process cloud images with a cloud detector
and a thresholding algorithm to obtain cloud contours. Then, cloud
contours are passed through a retrieval module to retrieve sketches
with similar geometrical shapes. Finally, we adopt a novel sketch
translation model with built-in free-form deformation for aligning
the sketches to cloud contours. To facilitate training, an icon-based
sketch collection named Sketchy Zoo is proposed. Extensive exper-
iments validate the effectiveness of our method both qualitatively
and quantitatively. Our code and data are publicly available1.

CCS CONCEPTS
• Computing methodologies → Computer graphics; Com-
puter vision.

KEYWORDS
image-to-sketch generation, cloud augmentation, shape alignment,
sketch synthesis

1https://wanzy.me/research/cloud2sketch
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1 INTRODUCTION
From time to time, we look into the sky and associate clouds with
imaginary objects. In the sky, no two clouds are ever the same, while
through our mind’s eyes, we make imaginations and associations
with similar animals.

It is human nature and creativity to imagine random natural
shapes, such as clouds, as familiar shapes, such as animals [10].
Humans recall in their minds a collection of previously seen ob-
jects [6] and project them onto seen clouds. We attempt to bring
this interesting imagination process into reality in this work. As
shown in Fig. 1, we propose a new application: augmenting cloud
images with imaginary sketch drawings that fit the shape of clouds.

Techniques for augmenting natural images have an important
place in augmented reality applications, such as entertainment ap-
plications [32], education techniques [23], and human-computer
interaction [14]. Due to its ubiquitous ability to represent visual
objects, sketch is a natural media for these kinds of applications.
As a result, sketch retrieval [43, 45, 46] and synthesis [41] are draw-
ing an increasing amount of research attention. Meanwhile, our
application is different from the existing sketch-related research
tasks. In comparison to classical sketch retrieval, cloud augmen-
tation requires a precise alignment of geometrical shapes. As for
sketch synthesis, which exactly depicts natural scenes or objects
with schematic drawing, imagined sketches are drawn from incom-
plete cues. An automatic system for achieving cloud augmentation
is not only a reflection of human imagination but may also sur-
prise humans with diverse results as shown in Fig. 2. On the other
hand, different from a generic image-to-sketch translation task,
unique challenges are introduced in cloud image augmentation
with imaginary sketches.

For the task itself, the shape features of clouds are diverse and
possibly vague. The imagination should focus on the overall shapes
but neglect noisy or trivial shape details. Therefore, we make asso-
ciations with animal sketches according to their contour shapes. On
the other hand, even the outer shape of clouds does not necessar-
ily correspond to a meaningful object (specifically animals in this
work). Therefore, it is important for a valid cloud augmentation
algorithm to add interior strokes inside the cloud area to ensure a
vivid drawing.

From the dataset perspective, existing datasets cannot be simply
transferred into our application because: (1) Sky detection / seg-
mentation datasets regard clouds as continuous regions without
distinguishing instances; (2) Sketch retrieval is normally defined
as a search process according to semantic similarities while our
application aims at geometrical correspondences; (3) The style of
dominant human-hand sketch datasets is not expressive enough for
aesthetic applications. From the model perspective, there are also
challenges that typical image-to-image translation methods can
hardly address. Cloud contours and sketch drawings represented in
raster images are sparse in comparison with natural images, making

Figure 2: Cloud shapes are so diverse that some shapes in-
voke ambiguous imagination. Therefore, a computational
algorithm may produce multiple results for the same cloud
shape, which may inspire humans with different imagina-
tion. The finding is verified by the user study in Sec. 5.

it difficult to extract meaningful features. Moreover, the alignment
of a sketch from imagination towards cloud contours is agnostic
in two respects. First, sketches from imagination are not neces-
sarily topologically equivalent to the targeted cloud shape in our
application. It might make an ideal alignment impossible. Second,
imagination-based augmentation is subjective and cloud shape is
represented as incomplete contours. Therefore, there usually exist
more than one optimal sketch drawings for a given cloud.

In this paper, we propose a self-supervised pipeline to tackle
these challenges. Inspired by the human process of imagining and
sketching up objects, we propose to break down cloud augmenta-
tion in images into three separate stages to which the algorithm can
be flexibly applied and adjusted. First, a natural image with clouds is
pre-processed to obtain the contours of the clouds. An input image
is transformed into an edge map in grayscale, to which a detector is
applied to detect possible cloud regions. Inside the detected bound-
ing boxes, we assume that there are mostly sky and cloud pixels.
Thus, we introduce and develop a segmentation algorithm based on
thresholding to parse cloud contours. Second, a contour-to-sketch
retrieval model is trained to retrieve sketches geometrically similar
to the contours detected in the first stage. Finally, the alignment
between the sketch and contour is achieved by a novel genera-
tion model built with free-form deformation (FFD). As shown in
Fig 1, from a given cloud image, the proposed pipeline manages to
perform an association to an animal sketch and a smooth alignment.

To facilitate training of our proposed pipeline, we collect an artist-
drawn sketch collection named Sketchy Zoo. It contains 3464mostly
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Figure 3: Our proposed pipeline for augmenting clouds with imaginary sketches. We propose to decompose the task into three
stages, 1) cloud contour detection to obtain cloud contours as shape features, 2) sketch retrieval to search for geometrically
similar sketch candidates, and 3) sketch alignment to smoothly align retrieved sketches and produce drawings on cloud.

animal sketches that are originally designed for aesthetic purposes
by professionals. The proposed pipeline is trained with Sketchy
Zoo and validated by extensive experiments both qualitatively and
quantitatively. We also conduct a user study to collect comments
and feedback. It provides an interesting comparison between the
computational algorithm and human imagination in Sec 5.

In summary, our contributions are several folds:
(1) We propose a novel task, augmenting clouds in images with

imaginary sketches, to bring human imagination of clouds
into reality.

(2) A novel and effective pipeline is conducted to tackle the
proposed task. It can be trained in a self-supervised manner
without human labeling.

(3) We collect a dataset of an artist-drawn sketch collection
for aesthetic applications. Using the collected sketches, we
validate the proposed pipeline with extensive experiments
and a user study.

2 RELATEDWORKS
2.1 Imagination for machine vision
Pioneers are exploring simulating human imaginationwith artificial
intelligence [15, 24]. Mahadevan [31] presents a new challenge to
integrate imagination into machines. Hamrick [12], Wang et al.
[42] propose to align learning systems with human imagination.
While these explorations are still at their early stages, there are
works that aim at bringing specific imagination into reality with
methods in the current realm of computer vision and deep learning.
Similar to our direction, Song et al. [37] proposes to implement
the mental image of face pareidolia that perceives illusory faces do
not actually exist with a computational algorithm. Our proposed
application task belongs to this direction of pareidolia but aims at
a totally different application and uses different methods.

2.2 Sketch Synthesis
Sketch synthesis has been widely studied due to the ability to repre-
sent objects and scenes abstractly. Human faces [40] and scenes [44]
are the most common sources for sketch synthesis. Li et al. [25]
learns to produce boundary-like drawings that capture the outline

of the visual scene and can work well despite the imperfect align-
ment of the annotation and the actual ground truth. More recently,
Chan et al. [4] adopts CLIP network [35] to generate informative
drawings which is aware of geometry and semantics. In vanilla
image-to-sketch translation, sufficient information is given by the
natural images and models filter redundant details out while keep-
ing the schema strokes. In contrast, our application requires models
to hallucinate details that can not be perceived from input images.

With the rapid development of sketch synthesis techniques,
many datasets [8, 11, 18, 25, 33, 36] have been proposed to facilitate
the training of learning-based methods. However, these existing
datasets aremostly designed for recognition of sketches [36], bound-
ary detection [33], and image synthesizing from sketches [8, 11].
Although different levels of abstractions are provided, they usually
contain badly drawn sketches. To this end, we propose an icon-
based sketch collection named Sketchy Zoo, which contains sketch
images drawn and curated by professional painters.

2.3 Spatial Transformation Networks
Spatial transformation networks are first introduced as Spatial
TransformerNetwork (STN) [22] to extract invariant features against
spatial transformation to help digital classification. STN is further
extended to learn other kinds of transformations, such as projective
or TPS [2]. Free-form Deformation (FFD) is recently introduced to
model more partial shape alignment problems in [13]. In our scenar-
ios, the deformation is more complex and flexible that we integrate
FFD and a sketch generator to achieve both spatial transformation
and detail preservation.

3 METHODOLOGY
In this section, we present our proposed method. It draws inspira-
tion from how humans imagine and sketch objects [8]. A human
usually (1) builds observation of the shape of the target object [9],
specifically a cloud in our scenario, in mind, (2) makes association
from the observation against his visual corpus [6], and (3) projects
the association togetherwith the object to form an “imagination” [3].
Analogous to the human process, the overall architecture of our
proposed method consists of three main components: cloud contour
detection, association search in a pre-collected sketch collection,
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Figure 4: Agnostic sketch alignment using the FFD Generator. The FFD Generator estimates 𝑎 in Eq. 2 to form an FFD from
contours of clouds to obtain course generation. A UNet follows the deformation module to refine the generated sketch.

Figure 5: The training process of the FFD generator. It follows
a self-supervised manner, where a sketch and its augmented
view form a data pair.

and sketch alignment. The pipeline is shown in Fig. 3. In the fol-
lowing subsections, we introduce each of the components in detail.

3.1 Agnostic Sketch Alignment
The core idea is that the cloud itself shapes an animal sketch in our
corpus, but in an agnostic spatial form. The task of agnostic sketch
alignment is to align a sketch drawing source towards the (possibly
partial) cloud shape target while keeping its gist and style. It is
achieved by a network with two sequential components illustrated
in Fig. 4. First, a spatial deformation is estimated from the concate-
nation of source and target to obtain a coarse alignment. Second,
the deformed source sketch is refined by a UNet [21] model to
recover the style and eliminate artifacts caused by the deformation.
FFD Module Inspired by STN [22] and ALIGNet [13], we utilize
a lightweight CNN to estimate spatial transformation. Different
from the conventional STN based on affine transformation, our FFD
Generator is built with a more flexible FFD module. The estimation
CNN can be a regular down-sampling network, e.g., ResNet18 [17]
in our experiments, that yields a sampling grid at a lower resolution.
The grid is interpolated to a higher resolution before warping is
performed.

Formulation of FFD estimation is supposed to encourage smooth
deformation and restrict the violation of monotonicity. Let us con-
sider a 1D sequence 𝑆 = {𝑠1, 𝑠2 ...𝑠𝐿} with length 𝐿 for simplicity.

An identical sampling grid (sequence for 1D) PI = {1, 2...𝐿} can be
represented by a basis and accumulated shifts:

P𝑘
I =

{
P𝑘−1
I

+ ΔP𝑘
I
, if 𝐿 ≥ 𝑘 ≥ 1

0, otherwise

ΔP𝑘
I =

1
𝐿
.

(1)

Similarly, FFD in general cases can be formulated by a sequence of
accumulating sampling shifts 𝑎 = {𝑎1 ...𝑎𝐿}:

P = {𝑎0 + Σ𝑘𝑗=1𝑎 𝑗 }
𝐿
𝑘=1 . (2)

We train a CNN to estimate 𝑎 and make 𝑎0 a constant 1/𝐿. With
cumulative summation and regulation, the FFD estimation roughly
preserves axial monotonicity while keeping differentiable. The CNN
is initialized to produce identical deformation that simply yields
output the same as input at the start of training.
Self-supervised Training As mentioned above, the FFD generator
aims to reconstruct a sketch given a partial and distorted input.
It is essentially hard to achieve since there is no existing paired
data for training. To this end, we propose a simple yet effective
self-supervised training strategy as shown in Fig. 5. To start with, a
sketch 𝐼𝑠 randomly sampled from our sketch corpus serves as source
for training. It is then geometrically distorted and masked out as
another view 𝐼𝑟 to mock a partial target. The distortion consists
of shear transformation and piece-wise affine transformation [34]
after which we obtain 𝐼𝑑 before masking. The mask is generated
from a uniform distribution in a region occupying 30% of the image
in height. The FFD generator estimates a free-form deformation
that warps the sampled source referring to the partial target:

𝑓𝑒 (𝐼𝑠 , 𝐼𝑟 ) (𝐼𝑠 ) = 𝑅𝑑
𝑠ℎ𝑎𝑝𝑒
−−−−−→ 𝐼𝑑 ,

𝑓𝑔 (𝑅𝑑 ) = 𝑅𝑠
𝑠𝑡𝑦𝑙𝑒
−−−−→ 𝐼𝑠 ,

(3)

where 𝑓𝑒 (·) and 𝑓𝑔 (·) are the FFD module and refine generator,
respectively. We enforce pixel-wise alignment between the aug-
mented view 𝐼𝑑 and the output of the FFD Module 𝑅𝑑 :

L𝑝 = |𝐼𝑑 − 𝑅𝑑 |. (4)
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On the contrary, the output of the refining UNet, 𝑅𝑠 , is not well-
aligned with the input 𝐼𝑠 but is distorted due to the non-rigid de-
formations. Neither can it be supervised directly via the deformed
result 𝐼𝑑 , because 𝐼𝑑 suffers from unrealistic shapes. To overcome
the obstacle, we propose to regularize via adversarial training. We
empirically adopt a Markovian discriminator [21] since it penalizes
structure at the scale of local image patches. The adversarial loss is
formulated as follows:

Ladv = log𝐷 (𝐼𝑠 ) + log(1 − 𝐷 (𝑅𝑠 )), (5)

where 𝑅𝑠 is considered as negative samples and 𝐼𝑠 is seen as positive
samples. We further adopt a regularizor on the estimated deforma-
tion 𝑎𝑖 according to Eq. 2:

L𝑟 =
∑︁

| |𝑎𝑖 − 𝑎0 | |. (6)

This design pulls 𝑎𝑖 towards 𝑎0, limiting the magnitude that the
estimated deformation differs from the identical free form defor-
mation. The overall loss function for our FFD Generator can be
summarized as follows:

L = L𝑝 + 𝜆𝑎L𝑎 + 𝜆𝑟L𝑟 , (7)

where we set 𝜆𝑎 = 1 and 𝜆𝑟 = 0.01 for all experiments.

3.2 Sketch Retrieval
The sketch retrieval module is the key to our imagination. By in-
corporating a diverse sketch corpus, we are able to locate the most
relevant sketches every time we extract the boundaries from clouds.
We then warp the reference sketches to align with the cloud edges
and the reference sketches are baselines of our imagination.

We implement our sketch retrieval module as a lightweight
ResNet. The training strategy is illustrated in Fig. 6. We train the
module in a contrastive manner using triplet loss

L(𝐴, 𝑃, 𝑁 ) = max
(
∥f (𝐴) − f (𝑃)∥2 − ∥f (𝐴) − f (𝑁 )∥2 + 𝛼, 0

)
,

(8)
where 𝐴, 𝑃 , 𝑁 are anchor, positive, negative input, respectively.

The module is capable of learning translation-invariant repre-
sentations of sketch images. To this end, we generate the positive
samples from the anchor inputs using various data augmentation
and distortion strategies. The negative samples are selected ran-
domly, with a 50% possibility of having the same class as the positive
samples, and a 50% possibility of having different a different class.

3.3 Cloud Edge Detection
For the source of augmentation, we look for clear cloud edges.
However, not all forms of clouds are suitable for augmenting. They
have different structures under different regions and conditions of
the atmosphere. In Appendix, we show cloud genera in different
physical forms [1], where we mainly consider cumuliform and
cumulonimbiform clouds as detection targets.

Several cloud detection/segmentation datasets have been pro-
posed in the literature [7, 38], while none of them achieves the
separation of cloud layers and instances that are critical for our
application. To avoid laborious data labeling, we train our detec-
tor with synthetic data on edge maps. We apply an off-the-shelf
edge detection algorithm [39] on a popular object detection dataset,

Figure 6: Contrastive training of contour-based sketch re-
trieval. We randomly sample an anchor sketch and a nega-
tive sketch. The anchor in its distorted view is regarded as a
positive sample.

COCO [28], to obtain our training data with labels provided by
COCO. During inference, the same algorithm is applied to the sky
area of the input image, after which our detector [27] trained on
COCO edges detects possible cloud regions to be augmented. Ex-
amples of training data and detection results are shown in Fig. ??.
When detecting edges from sky images, we focus on cloud areas
obtained by an off-the-shelf semantic segmentation model [5].

Inside bounding boxes of clouds, we use thresholding techniques
inspired by [26] to locate cloud pixels. As shown in Fig. 13 in the
Appendix, the histograms of red and blue channels of an RGB image
are informative for distinguishing cloud regions. An ideal feature
space for cloud segmentation is supposed to be bi-modal where the
foreground can be separated from the background. Therefore, we
use the normalized B/R ratio as feature of clouds images:

𝛾𝑁 = (𝛾 − 1)/(𝛾 + 1),
𝛾 = 𝑏/𝑟,

⇔ 𝛾𝑁 = (𝑏 − 𝑟 )/(𝑏 + 𝑟 )
(9)

where 𝑟 and 𝑏 are red and blue values in a raster image. We can
perceive from Fig. 13 in the Appendix that the feature image of 𝛾𝑁
maintains more consistent contrast and is more robust to noise. The
thresholds shown in Fig. 13 are chosen by maximum entropy from
histograms. According to [30], the fixed threshold is not accurate
for cumuliform. Thus, the watershed algorithm is applied in our
algorithm. Then from the precise regions of clouds detected, we
can easily obtain their contours by finding connected components.

4 DATASETS AND EXPERIMENTS
In this section, we present our collected sketch collection for train-
ing and test images for evaluation of our pipeline. Based on col-
lected data, we train our proposed pipeline and conduct extensive
experiments to validate it.

4.1 Datasets
We collect two datasets to train and validate the proposed pipeline:
A sketch collection of high-quality sketch images and a test set of
cloud images.
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Figure 7: Qualitative presentation of augmented results by our proposed method. We also provide an extended application of
our algorithm that augments other types of images (e.g., islands in the sea) in Appendix.

Figure 8: Examples of our collected sketch collection, named
Sketchy Zoo. Sketchy Zoo consists of sketches created by
professional designers for aesthetic purposes. Multiple tags
are attached to each image for more general tasks.

Sketchy ZooWe collect a new sketch dataset consisting of 3464
images in total, all drawn and curated by professional painters. We
refer to the dataset as Sketchy Zoo, since most of the sketches are
cute animal icons with high quality and diversity. Initial data are
crawled from an icon collection website2. We manually choose icon
collections that are created with lines instead of stuffed colors. Our
algorithm takes raster images as input, while vector graphics of
collected sketches are also available.

2https://thenounproject.com/icons/

Sketchy Zoo is quite different from existing sketch datasets.
Since it comes from designers for professional purposes, sketches
in Sketchy Zoo are more vivid and expressive than those collected
from user drawings. This quality advantage is substantially im-
portant for the success of sketch-based augmentation applications.
Moreover, although class labeling is not requisite for our applica-
tion, Sketchy Zoo provides tags describing the class and style of
sketches labeled to each sketch. Therefore, it may open up new op-
portunities in image augmentation with sketches. Some examples
of our datasets are shown in Fig. 8.
Cloud Images We collect ground-based cloud images to evalu-
ate our proposed method. It contains 100 cloud images shot from
the ground under diverse light conditions. The images are origi-
nally collected from Instagram by artists. We manually review and
remove images without clear edges.

4.2 Qualitative Results
We use Sketchy Zoo to train our proposed method. Final augment-
ing results and intermediate results of each stage are shown in Fig. 1
and Fig. 7, respectively.

As stated in Sec. 3.3, three models are adopted sequentially to pre-
process cloud images, DeeplabV3 [5] for sky region segmentation,
DexiNed [39] turning RGB clouds into edges, and RetinaNet [27]
for cloud contour detection on edge maps. Results of cloud instance
segmentation and contour detection are shown in the second col-
umn in Fig. 7. It can be seen from the visualization that the detector
locates salient clouds with clear edges that are possible for aug-
mentation. The cloud segmentation algorithm presented in Sec. 3.3
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Table 1: Quantitative results of average IOU and Moment
Distance on our test set. A higher shape IOU indicates tighter
alignment. Small Moment distance indicates similar shape
properties. See Sec. 4.3 for details.

Contour IOU Moment L2 Distance
average 0.38 0.68

+ retrieval 0.39 0.55
+ FFD Generator 0.63 0.53

Figure 9: Comparison of the FFD Generator and the state-
of-the-art image-to-image translation methods on sketch
complement. Sketches from Sketchy Zoo are masked out as
the source. Different from image inpainting, the gray regions
are illustrated only for visualization, which is unknown to
the models.

accurately locates clouds in different light conditions. The segmen-
tation can be easily turned into a contour by finding the connected
component with the maximum area inside each bounding box.

After pre-processing, the contour of target cloud regions serves
as a reference for sketch retrieval in the corpus and the target for
sketch alignment. The search in corpus manages to find sketches
with similar geometrical shapes. The generated results demonstrate
that the proposed FFD Generator smoothly aligns sketches with
clouds and the gist of the sketches is faithfully preserved. We rec-
ommend seeing the Appendix for extended applications of the
proposed pipeline as well.

4.3 Quantitative Evaluation
In addition to the qualitative results shown so far, we conduct our
quantitative validation based on shape similarity to investigate
the effect of sketch retrieval and alignment. In Tab. 1, we evaluate
the augmentation with two metrics. Firstly, generated sketches are
turned into contours, then IOU between pixels inside sketch con-
tours and cloud contours can be computed. In addition, L2 distance
between their Hu Moments [19] are introduced to measure the
geometrical distance between generated sketch and cloud contours.

The average result of all images on our test set is shown in
Tab. 1. In comparison to the average of total Sketchy Zoo, sketches
from retrieval demonstrate significantly lower moment distance
but similar contour IOU. The level of change is expected since
Hu moments are invariant to translation, scale, and rotation. It
verifies that our retrieval model retrieves sketches that maintain
similar geometrical properties but is tolerant to differences in spatial
forms. This spatial gap is fulfilled by FFD Generator. As Tab. 1
reads, FFD Generator elevates IOU between sketches and clouds,
while maintaining and even improving the consistency in image
moments. It indicates that FFD Generator effectively aligns sketches
and preserves shape features.

4.4 FFD Generator
Since the effectiveness of our pipeline is verified by quantitative
comparison, we conduct an ablation study focusing on FFD genera-
tors and possible substitutes.

We validate the effectiveness of our FFD generator with the
sketch completion task to recover the original sketches from their
masked-out views. We compare against state-of-the-art image-
to-image translation methods, including Pix2Pix [21] and Cycle-
GAN [47]. As shown in Fig. 9, sketches from Sketchy Zoo are
masked out and fed with their deformed views into the networks.
Training data of comparison methods are identical to that of our
FFD generator. Although given the same input, Pix2Pix can only
slightly extend lines at ends, without meaningful directions. Cycle-
GAN produces more stable strokes. The line width is consistent and
it tends to form closed shapes. However, it is still limited in build-
ing the geometrical relationship and thus, the result is incomplete.
Benefiting from a different principle that estimates FFD from the
partial source, FFD Generator faithfully completes the masked-out
sketches. Note that different from image inpainting, the location of
mask regions is unknown to models. To further investigate the com-
parison of completion capacity between Pix2Pix and CycleGAN,
we present another interesting experiment in Appendix.

5 USER STUDY AND DISCUSSION
In this section, we conduct a user study to subjectively evaluate
the proposed task and pipeline from the perspective of users. We
invited 36 users with diverse backgrounds to participate in the study.
Among them, 12 have advanced education in computer vision to
balance the views of experts and common users. Each participant
is asked to answer questions in a questionnaire anonymously and
independently. Throughout the questionnaire, we avoid indicating
that shown drawings are from human drawings or computational
algorithms to prevent implication bias.

First of all, the participant is asked whether ever imagined clouds
in the sky as animals and whether sketch drawings on clouds are
interesting before any drawing is shown. The answer distribution
is shown in Fig. 10(a). It shows the ubiquitousness and significance
of the proposed task that all participants admit they have had this
imagination, more or less. About 27% of participants think it is a fre-
quent imagination (“often” or “normally”). They also demonstrate a
promising interest in the task. When asked for an immediate score
of this task without seeing actual drawings, 2/3 of participants are
interested (those who score 4 or 5).
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(a) (b)

(c)

Figure 10: User study on the proposed task (a) and results of the proposed pipeline (b). Evaluation in different aspects is shown
in (c). Participants score whether the algorithm results are natural, interesting, reasonable associations, coincide with human
imagination, and precise alignment, respectively. Details and more results are provided in Sec. 5.

Then we display 10 cloud augmentation results generated by
our proposed algorithm and ask participants to score them in 5
aspects: hownatural the sketch drawing look; how interesting the
sketch drawing look; how reasonable the association is; whether
the imagination coincide with the participant’s; how precise the
sketches align with the cloud shape. We compute the average
score from each participant in each dimension over all 10 shown
results and illustrate the frequency in Fig. 10(c). The most concerted
opinion is that the augmentations are “interesting”, with the highest
average score of 3.9. Meanwhile, participants hold contentious
views to “coincide” scores. Many of them comment that some cloud
shapes do not immediately invoke an explicit imagination so the
chance of coinciding is not high. We think this phenomenon is
interesting because, in themeantime, participants give higher scores
in “interesting” and “reasonable”, through which we perceive their
agreement with the imagination produced by the algorithm. It
verifies our anticipation that a computational algorithm not only
reflects human imagination but may also inspire humans with
different associations.

Due to the trade-off between the preciseness to coordinate with
cloud shapes and smoothness to keep gist of sketches, approxi-
mately 47% of participants score the alignment as neutral or below.
Moreover, cloud shapes that might be vague at boundaries are
transformed into exact contours, which increases the uncertainty
of alignment. In future work, the trade-off and uncertainty in align-
ment would be further investigated.

Following scores in detailed aspects, the questionnaire asks about
the overall judgment of our results and preferences in comparison.
As shown in Fig. 10(b), more than 94% of participants give a positive
response to shown drawings. In comparison with the two baseline
models, our proposed method overwhelmingly wins the votes. It

is actually not surprising to us because of the challenges of the
proposed task that can not be addressed by existing methods.

For the last questions, we ask participants to give comments
on the task and show drawings. Regarding their feeling about the
application, participants give positive feedback like “Very signifi-
cant, demonstrating imagination”, “relaxing and interesting”, “an
attractive technology”, “a funny game I wish to join”, “It attracts
me, very interesting!”, etc. On the suggestion of the task, it is in-
teresting that participants comment diversely and even in contrast.
For example, some suggest “avoid too complicated sketches” while
another participant with a background in computer vision suggests
“more details more interesting.” We believe drawing with the same
expressive power can be achieved by fewer strokes if the alignment
can be more precise in future work.

6 CONCLUSION
In this paper, we present a novel application task, cloud augmenta-
tion with imaginary animal sketches, which brings imagination into
reality. We design a self-supervised pipeline to address the unique
challenges of this task. By decomposing the task into three stages,
cloud contour detection, sketch retrieval, and sketch alignment, the
proposed pipeline manages to augment clouds with vivid sketch
drawings. Our extensive experiments validate its effectiveness and
a concrete user study provides further guidance for this application.
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A CLOUD GENUS
Clouds as the source of imagination in this work exist in diverse
forms in different altitude levels or conditions of the atmospheres.
There are many ways to identify and classify clouds in different
orders [20]. From the ground-based perspective, we consider the
physical forms of clouds to determine proper cloud types. In Fig. 11,
we show cloud genus classified according to their physical forms [1].
To the end of clear cloud shapes and edges, we emphatically choose
clouds in Cumuliform and Cumulonimbiform (Fig. 11d and Fig. 11e,
respectively) to form our test data.

B SKETCH COMPLETION
In our paper, we verified that current image-to-image translation
methods can hardly address the challenges posed by our proposed
task.While in the early stage of our research, we investigated the po-
tential capability of the state-of-the-art methods to complete images
without knowing which parts are missing. In Fig. 14, Pix2Pix [21]
and CycleGAN [47] demonstrate different completion results. Bene-
fiting from the large receptive field of stacked convolutional layers
and direct pixel supervision, Pix2Pix manages to reconstruct the
synthetic color images. We expected that CycleGAN is limited in
this task since the masked image can theoretically not be recovered
from the ground truth, which is the foundation of CycleGAN. The
observation coincides with Liu et al. [29] who propose to complete
sketches with a multi-stage Pix2Pix model, named SketchGAN.
However, their experiments are limited to a 10% mask that is in-
sufficient for most applications. When extended to a larger area,
the algorithm also demonstrates limited completion capacity, as

shown in Fig. 15. Even with stacked prediction stages, SketchGAN
can only complete small parts. It’s still an open and challenging
problem to complete a sketch without a reference (our FFD Gener-
ator achieves it with a reference from sketch retrieval). Recently,
He et al. [16] propose masked autoencoders for self-supervised
training where the agent task is to complete masked images and
demonstrate promising results. It brings new chances to the prob-
lem of sketch completion, while sketch images are more sparse and
thus more challenging.

C HU MOMENTS FOR SKETCH RETRIEVAL
In the quantitative comparison in our paper, we introduce Hu Mo-
ments Hu [19] as a measure of shape similarity. It is a natural idea
to directly use Hu Moments as shape features for sketch retrieval
in cloud2sketch, as Hu Moments are invariant to rotation and scale.
In Fig. 16, we compare the retrieval results by Hu Moments and our
proposed algorithm. Although Hu Moments describe features of
shapes in images, the cloud contours maintain insufficient informa-
tion and the retrieval from contour shapes requires more high-level
geometrical correspondence that neural networks can capture.

D EXTENDED APPLICATION
The proposed cloud2sktech pipeline can be easily transferred to
other augmentation sources with minor changes. In Fig. 17, we
show augmenting islands on the see using our proposed algorithm.
Although it is designed for cloud augmentation, it can be applied
to other sources with minor changes: only the input channel of the
thresholding algorithm is altered and no model is re-trained.
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(a) Stratiform (b) Cirriform (c) Stratocumuliform (d) Cumuliform (e) Cumulonimbiform

Figure 11: Cloud genus according in different physical forms. We consider cumuliform and Cumulonimbiform as proper source
for augmentation.

Figure 13: Normalized blue/red ratio for cloud segmentation,
where 𝛾𝑁 = (𝐵 − 𝑅)/(𝐵 + 𝑅). “B”, “R”, and “Gray” are blue, red,
and grayscale channels, respectively.

Figure 14: Comparison of image translation methods on a
toy task to complete colored regions.

Figure 15: Sketch completion results by SketchGAN [29].
When applied to sketches with larger mask areas (30%), its
completion capacity is limited.

Figure 16: Comparison of sketch retrieval by Hu Mo-
ments [19] and ours.

Figure 17: Augmenting islands on the sea using our
cloud2sketch algorithm. Only the input channel of cloud seg-
mentation algorithm is changed and no model is re-trained.
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