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Abstract
B-mode ultrasound (US) is often used to non-invasively measure skeletal muscle architecture, which contains
human intent information. Extracted B-mode images can help improve closed-loop human-robotic interaction
when using rehabilitation/assistive devices. The traditional manual approach to inferring the muscle structural
features from US images is laborious, time-consuming, and subjective among different investigators. This paper
proposes a clustering-based detection method that can mimic a well-trained human expert in identifying fasci-
cle and aponeurosis and, therefore, compute the pennation angle (PA). The clustering-based architecture assumes
muscle fibers have tubular characteristics. It is robust for low-frequency image streams. We compared the pro-
posed algorithm to two mature benchmark techniques: UltraTrack and ImageJ. The performance of the proposed
approach showed higher accuracy in our dataset (frame frequency is 20Hz), i.e., similar to the human expert.
The proposed method shows promising potential in automatic muscle fascicle orientation detection to facilitate
implementations in biomechanics modeling, rehabilitation robot design, and neuromuscular disease diagnosis with
low-frequency data stream.

1. Introduction
The human musculoskeletal system plays an essential role in enabling various functional human limb
movements in daily life, e.g., sit-to-stand, walking, reaching, and grasping. Neuromuscular disorders,
including spinal cord injury (SCI) and stroke, paralyze skeletal muscles, thus impairing normal activ-
ities of daily living. Muscle architectural features of the paralyzed muscles such as muscle fascicle
length, fascicle orientation, pennation angle (PA), muscle thickness can potentially reveal residual
motor intent, which can be compensated effectively through neuroprosthetic or robotic intervention
[Jahanandish et al. (2019); Zhang et al. (2020a)]. Besides, examining the skeletal muscle architectural
features can also help diagnose muscle degenerative conditions, e.g., sarcopenia [Mueller et al. (2016);
Ticinesi et al. (2017); Chang et al. (2018)].

Extraction of skeletal muscle architectural features depends on the detection of muscle fascicles (i.e.,
bundles of skeletal muscle fibers) and aponeuroses (i.e., connective tissues). Ultrasound (US) imaging
has been widely applied to detect muscle architectural features given different tissues with different
acoustic impedance. In US imaging, the tissues can be visualized as hyperechoic tubular structures
[Zhao and Zhang (2011)]. Compared to magnetic resonance imaging (MRI), US imaging is a low cost,
radiation free, and time efficient real-time display technology. Therefore, US imaging has been widely
used in research and clinical studies to investigate muscle architectural features for biomechanics mod-
eling and neuromuscular disease diagnosis. Manual detection is robust and reliable across a broad
range of experimental conditions [Kwah et al. (2013)]. However, this traditional method is time- and
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energy-consuming, particularly when massive temporal sequences of US imaging frames need to be
analyzed [O’Brien et al. (2010); Giannakou et al. (2011); Baroni et al. (2013)]. Moreover, the detec-
tion performance is relatively subjective among different investigators [Darby et al. (2012); Zhou et al.
(2015)].

In recent years, several semi-automatic and fully automatic muscle fascicle tracking algorithms have
been proposed to efficiently and effectively extract muscle architectural features [Cronin et al. (2011);
Damon et al. (2011); Gillett et al. (2013); Zhou and Zheng (2015); Marzilger et al. (2018); Liu et al.
(2019); Wang et al. (2019); Yuan et al. (2020)]. In [Zhou et al. (2015)], the authors developed a Gabor
wavelet with Hough transform (GWHT) method to achieve a successful detection of PA. This method
simulated human vision as the investigator selected the muscle fascicles. With prior knowledge about
the distribution and shape of fascicles and aponeuroses, the correlation between the manually mea-
sured angle and the automatically detected angle could be as high as above 0.9, and the error was
around 1.5 degrees. However, it has a relatively long processing time (20 seconds with an Intel Core 2
Q8400 2.66-GHz processor) due to the complexity of the Hough transform, which still leaves room for
improvement.

Marzilger et al. [Marzilger et al. (2018)] developed a semi-automated algorithm for measuring vastus
lateralis muscle architecture, and its inter-day reliability were effectively validated. However, pixel
brightness (i.e., intensity, echo intensity, or echogenicity), an important factor for selecting the target
fascicle, was not considered in that paper. In addition, although the computation time for a typical video
with approximately 500 frames and a region of interest (ROI) of 614×140 pixels was around 2 minutes,
an additional 10-15 minutes period was necessary to control and adjust possible alternations within the
video. Thus, its long processing and tuning time limits the fully automatic applications in real-time.

A belt linear summation transform (BLST) method was derived in [Wang et al. (2019)] that considers
the pixel brightness and does not require any extra domain knowledge. However, its time complexity,
𝑂

(
𝑇 · 𝑁2) , where 𝑇 denotes the resolution of the rotation and 𝑁2 denotes the resolution of the image,

is still too high. Radon transformation (RTF) is also a well-developed and applied technique for muscle
fascicle orientation or PA detection from US imaging [Zhao and Zhang (2011); Liu et al. (2019); Yuan
et al. (2020)]. However, its complexity is higher than BLST, as proven in [Wang et al. (2019)].

As one of the most successful methods, the optical flow algorithms [Cronin et al. (2011); Gillett
et al. (2013)] have been commercialized as a Matlab toolbox UltraTrack [Farris and Lichtwark (2016)].
This toolbox has been updated from the first generation that can only track a single muscle fascicle
to the recent fourth generation that enables tracking of multiple fascicles. The toolbox can detect and
track the orientations and length of fascicle and aponeurosis, thus, computing the PA sequence using
the orientations [Darby et al. (2012); Kawamoto et al. (2014)]. The core technique of UltraTrack is to
implement affine flow algorithms and pursue features from one frame to another using Lucas-Kanade
or cross-correlation approaches [Cronin et al. (2011); Gillett et al. (2013); Darby et al. (2012); Farris
and Lichtwark (2016)]. In general, this method requires a manual determination of the tracking features
in the initial image frame. Then, the locations of key points defined in the initial image frame are
automatically tracked through image frames [Van Hooren et al. (2020)]. In some cases, e.g., when
movements of the selected key points between consecutive images are not sufficiently small which are
usually seen in low-frequency image frames, it may lose the good tracking [Zhou et al. (2015)]. Another
limitation of optical flow is the drift error. But it was addressed in a recently-developed method, i.e.,
TimTrack [van der Zee and Kuo (2022)].

Another flagship method to measure muscle fascicle orientation or PA is ImageJ [Abràmoff et al.
(2004); Seynnes and Cronin (2020)], which can be conveniently implemented across platforms. The
consensus-based algorithm rotates the detection angle for the image and observes which one reeves
most data points, and this angle is regarded as the fascicle orientation. However, the tracking accuracy
cannot be guaranteed when the image contains noises.

This paper proposes a clustering-based detection method, which can balance the fascicle/aponeurosis
tracking accuracy, computational load, and robustness for low-frequency US imaging data. This method
aims to mimic a human investigator in labeling the architectural features in an unsupervised learning
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fashion and thus estimate the PA. This method is derived based on the following facts that fascicles and
aponeuroses can be distinguished by clustering the pixels of the US image and they are in tubular shape
so that lining the left and right points can be used to determine their orientations.

A human expert likely assigns the tubular shape, i.e., cluster, with the highest brightness and length
as the targeted muscle fascicles or aponeuroses. Therefore, we can assign values to each cluster based
on the length and brightness, and then the cluster with the highest value is selected as the intended
muscle fascicle.

The proposed method was tested on the tibialis anterior (TA) muscle US image time sequence data
obtained during isometric ankle dorsiflexion experiments from three participants without neuromuscu-
lar disorders. One dominant fascicle and the deep aponeurosis in each US image were labeled manually
by a human expert. The labeled fascicle’s and aponeurosis’s orientations and the resultant PA mea-
sures were treated as the ground truth. We initially investigated the performance of three clustering
methods, density-based spatial clustering of applications with noise (DBSCAN) [Ester et al. (1996)],
K-means [Hartigan and Wong (1979)], and hierarchical agglomerative clustering (HAC) [Lukasová
(1979)], which are representatives of density-based, partitioning, and hierarchical clustering, on one
out of three human participants. The result indicates that DBSCAN performs superiorly to the others,
and the UltraTrack outperforms the ImageJ on this dataset. Therefore, we compared the result col-
lected from DBSCAN-based clustering and the UltraTrack, and the former showed higher accuracy in
our low-frequency image data while processing time was about 0.2 seconds per image with an Intel
Core i7 Processor. The preliminary results shown in this paper imply that the clustering methods may
have value in extracting a muscle structural features for their potential use in human-robot interaction
or diagnosing degenerative muscular diseases.

2. US Imaging data and ground truth acquisition
Experimental data that were collected in our previous study [Zhang et al. (2020b)], including isomet-
ric ankle dorsiflexion force at seven ankle joint postures and corresponding TA muscle US imaging
signals from three able-bodied participants, were implemented here to test the proposed unsupervised
clustering approach in this paper. The detailed experimental setup, US transducer placement, and data
collection can be referred to [Zhang et al. (2020b)]. During the experiments, the ankle joint dorsiflexion
force signals were collected at 1000 Hz while the B-mode US images of the TA muscle were syn-
chronously collected at a frame rate of 20 Hz. In the experimental data collection procedure, a trigger
signal from the data acquisition board (DAQ) was sent to the US machine to synchronize the collec-
tion starting time point, and both force and image data were collected every 0.05s; thus, signals were
aligned.

A typical B-mode US image of the targeted TA muscle is shown in Fig. 1, where the 𝑥-axis is the dis-
tance away from the US transducer center along the longitudinal direction, and the 𝑦-axis is the depth
from the skin surface. The brightness and darkness of the US image represent the normalized gray-
scaled value (between 0 and 255) of each pixel, which is calculated from a logarithmically compressed
imaging signal. For simplicity, only the upper pennate section is taken into consideration for determin-
ing the structural features like fascicle orientation and PA. The upper pennate section is selected as in
the red dashed rectangular area in Fig. 1, where PA is defined as the angle between the most visualized
fascicle and the middle aponeurosis. The orientation of the fascicle and the middle aponeurosis with
respect to the horizontal level is calculated separately to get PA by using the manual label approach and
the proposed clustering-based detection approach.

A professionally trained expert labeled the fascicle and aponeurosis in each image as shown in Fig.
1. The manual fascicle and aponeurosis selections were based on the brightness, length, position of the
former detected fiber, etc., which can help design the rules for our unsupervised learning.
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Figure 1. A typical B-mode US image of the TA muscle. 𝑥-axis is the distance along the probe longitudinal direction (The center line is the
zero position, left and right sides represent proximal and distal directions), and 𝑦-axis is the depth of the TA muscle. The RGB data of every
pixel were transferred to grayscale value between 0 and 255.

Figure 2. The figure shows the segmentation of the upper pennate session of TA muscle, where muscle fascicle is in the ‘top’ sub-image,
and middle aponeurosis is in the ‘bottom’ sub-image. These two sub-images are the two regions of interest (ROIs) to detect the muscle
fascicle and middle aponeurosis, respectively .

3. Method
3.1. US imaging preparation and pre-processing
The pipeline of muscle fiber detection procedures can be divided into three main phases, including
image preparation, clustering and re-clustering, and fiber selection. In this section, the details of the
procedures are presented.

3.1.1. Trim
As discovered in Fig. 1 and Fig. 2, only local small regions contain the interested muscle fascicle and
middle aponeurosis. In this procedure, we trimmed off the parts from the original image that apparently
did not contain the fascicle or aponeurosis. Then, the remaining image was cut to two sub-images,
i.e., the ‘top’ one, which contains the target fascicle, and the ‘bottom’ one, which contains the middle
aponeurosis. The trimmed image can be seen on the right side of Fig. 2.

3.1.2. Denoising
In this step, we removed the pixels whose brightness is lower than a pre-defined threshold, 𝛼. This can
help highlight the muscle fascicles and middle aponeurosis.
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3.1.3. Augmentation
For some images where the fascicles were not clear, we augmented the brightness in certain regions.
The region is determined based on human judgment. This helped further highlight the target muscle
fascicles. The following content demonstrates its effectiveness.

3.2. Initial clustering
The clustering technique in this paper groups the total 𝑁 pixels of the ROIs, 𝑹, to 𝑘 clusters based on
the associated parameters, 𝜗, where 𝑘 ≥ 0, and the clustering fails if 𝑘 = 0. Considering the case that

𝑘 > 0, let’s define the clusters to be 𝑺 = {𝑆𝑖 , 𝑖 = 1, 2, . . . , 𝑘}, where
𝑘
∪
𝑖=1

𝑆𝑖 ⊆ 𝑹.

3.2.1. DBSCAN
DBSCAN is a density-based clustering method, which has two parameters, i.e., the minimum points
m∈ R+ and distance 𝜀 ∈ R+. The clustering rule is that:

1) For one pixel, 𝒙0, group all the neighbors, {𝒙𝑖}𝑖=1,2,...,𝐼 , which are within 𝜀 to the pixel. If 𝐼 + 1
is greater than 𝑚, {𝒙𝑖}𝑖=0,1,2,...,𝐼 are defined as the core points.

2) If a pixel, 𝒙 𝑗 , is within 𝜀 of a core point, 𝒙𝑖 , 𝒙 𝑗 is defined to be directly reachable from 𝒙𝑖 .
Assuming that there exists a sequence of core points, {𝒙𝑖}𝑖=0,1,2,...,𝐼−1, and 𝒙𝑖+1 is directly reachable
from 𝒙𝑖 , 𝒙 𝑗 is defined to be reachable from 𝒙0 if it is directly reachable from 𝒙𝐼 .

3) All the pixels are reachable from a core point and the core point itself forms a cluster.
4) After each pixel is examined, all the clusters is identified. The pixels that do not belong to any

cluster is treated as noise.
This clustering mechanism leads to a 𝑂 (𝑁log𝑁) computation complexity averagely, and the worst

scenario is 𝑂 (𝑁2).

3.2.2. K-means
K-means is a partitioning clustering method, which is to find 𝑘 clusters, 𝑺 = {𝑆𝑖 , 𝑖 = 1, 2, . . . , 𝑘}, that
can minimize the following within-cluster sum of squares, i.e.,

arg min
𝑺

𝑘∑︁
𝑖=1

∑︁
𝒙𝑖𝑛∈𝑆𝑖

𝒙𝑖𝑛 − 𝝁𝑖
2 (1)

where 𝒙𝑖𝑛 (𝑛 = 1, 2, ..., 𝑁) denotes the 𝑛-th pixel position in Cluster 𝑖, and 𝝁𝑖 = 1
𝑁

𝑁∑
𝑛=1

𝒙𝑖𝑛 denotes

the mean of Cluster 𝑖. Note that, 𝑘 is usually a user-defined constant. The clustering is applied in an
iterative manner. Initially, 𝝁𝑖 (𝑖 = 1, 2, ..., 𝑘) is randomly selected, and 𝑺 is determined by solving (1).
Based on the current 𝑺, 𝝁𝑖 are updated, and thus, 𝑺 are further updated until converge.

The computation complexity is 𝑂 (𝜂 · 𝑘 · 𝑁), where 𝜂 is the number of iterations. In this paper, he
dimension of the US image pixel is 2, e.g., axial and lateral coordinates in each US image.

3.2.3. HAC
HAC is very similar to K-means, but it does not demand 𝑘 exact clusters and does not randomly pick
up 𝑘 initial means. Instead, each pixel is initially treated as a cluster, and each of the neighboring pixels
of the cluster is absorbed into a cluster if the distance, Euclidean distance, is less than a user-defined
threshold. Typically, the computation complexity of the naive HAC is 𝑂

(
𝑁3) .
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Figure 3. This figure depicts (a) the definition of the tubular shape muscle fascicle orientation angle through clustering, (b) the criteria of
reclustering to merge two clusters into one, (c) each cluster is assigned with a value .

Figure 4. This figure represents the pipeline of the muscle fascicle detection and the details of the image processing for each step. The
yellow line in the machine-labeled image represents the orientation of the cluster with the highest value in the top image, and purple one is
for the down image.

3.3. Re-clustering
After the pixels were grouped into 𝑘 clusters, we performed a re-clustering process to drive them
to 𝑙 new clusters. The purpose of this process was to update 𝑺 = {𝑆𝑖 , 𝑖 = 1, 2, . . . 𝑘} to 𝑼 =

{𝑈𝑖 , 𝑖 = 1, 2, . . . 𝑙}, where 𝑙 ≤ 𝑘 . The procedures are summarized as the following two steps.
Step 1. For each cluster, find the pixel points in the four corners, i.e., right-up, 𝑥++, right-down, 𝑥+− ,

left-up, 𝑥−+, and left-down, 𝑥−− . Draw the first line, 𝐿+, that aligns point 𝑥++ and point 𝑥−− , and the
second line, 𝐿− , that aligns point 𝑥+− and point 𝑥−+. Denote the intersection angle of 𝐿+ and horizontal
direction to be 𝜃+, also known as the orientation angle of 𝐿+. Similarly, the orientation angle of 𝐿− is
denoted as 𝜃− . Then, compute the average, 𝜃 = 𝜃++𝜃−

2 , which is defined as cluster angle (the definition
is visualized in Fig. 3 (a)). As the cluster has a tubular shape, the angle 𝜃 could roughly represent the
orientation.

Step 2. As what is shown in Fig. 3 (b), we find each pair of clusters, if one’s most left point is on the
right of the most right point of the other’s, which have similar orientation angles, i.e., |𝜃1 − 𝜃2 | < 𝜖0.
Then, connect these two clusters by lining the point 𝑥+++𝑥+−

2 of the left cluster and 𝑥−++𝑥−−
2 of the right

cluster. Defined the angle between the connection line and the horizontal direction as connection angle,
𝜙. Then, check if the values of 𝜙 and 𝜃 are very close, i.e.,

���𝜙 − 𝜃1+𝜃2
2

��� < 𝜖1. If so, the clusters are
regrouped to one (See Fig. 3 (b)). Iterate this procedure until no clusters can be merged together. We
can remove the implausible clusters by applying domain knowledge of the general fascicles flow in the
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US image. For instance, the fascicle’s most left pixel position should be higher than the most right one;
otherwise, the cluster is not plausible and, therefore, it is discarded.

Then, the orientation of the newly merged clusters, defined as 𝜌 (computed as shown in Fig. 3(a)),
is used to represent the orientation of the interested fascicle or aponeurosis.

3.4. Target Muscle Selection
In this procedure, we assigned a value to each cluster using a user-defined function, and then selected
the cluster with the highest value as the targeted muscle, e.g., fascicle. The value function of 𝑈𝑖 (the 𝑖𝑡ℎ

cluster) is defined as

𝑉𝑖 =
1
𝑁

𝑁∑︁
𝑛=1

𝑏
(
𝒙𝑖𝑛

)
+ 𝑤 ·

𝒙𝑖𝑛− − 𝒙𝑖𝑛+
 (2)

where 𝑁 is the pixel number in that cluster, 𝑏 (·) is the echo intensity of a pixel, 𝒙𝑖𝑛− is the position of
the most left pixel and 𝒙𝑖𝑛+ is the most right pixel in 𝑈𝑖 , 𝑤 is the weight. The objective was to find the
cluster who carried the highest value, i.e., argmax

𝑈𝑖∈𝑼
𝑉𝑖 . Then the angle between the line that connects 𝒙𝑖𝑛−

and 𝒙𝑖𝑛+ with respect to the horizontal direction was defined as the orientation angle of the new cluster,
which was also considered as the orientation of the targeted muscle fascicle. By summing the two
orientation angles of muscle fascicle and middle aponeurosis, we obtained the PA for the TA muscle.

4. Analysis on representative samples
4.1. A Representative Image
We tested the pipeline step-by-step shown in Fig. 4 on a representative image. After the denoise oper-
ation, the sub-images contained much fewer pixels than the original ones. Then the clustering can be
effectively applied to the denoised sub-images as the tubular shapes in the image became more clear.
From the second and third columns in Fig. 4, we can see that some tubular segments were grouped into
several clusters. In this representative image, the pixels in the top sub-image are initially clustered to
15 clusters. After the re-clustering procedure, the clusters in the top sub-image were updated to 8 new
clusters. Without losing generality, the fascicle detection results will be highlighted in the following
content. After evaluating the new clusters, the one with the highest evaluation value was found, and a
line connecting its most left-up pixel point and most right-down pixel point was drawn to represent the
muscle fascicle.

4.2. Augmentation Filter
Although the fascicle detection performance is satisfactory for the representative image with less noise,
there is possibility for hindered performance with blur images containing significant noise.

From Fig. 5(a), we can see a cluster that does not contain a fascicle but carries a very high value as its
brightness is high. Its high value is very likely to induce a wrong detection in the initial clustering.We
can see that if the detection is attracted by the wrong muscle, which is circled by a red ellipse, the
PA is estimated to be 10.93◦. If right, the PA is 11.11◦, while the human-annotated PA is 11.90◦. To
address this problem, we augmented a local region in the top sub-image that contained the targeted
fascicle. This operation aims to increase the brightness of the pixels in that region so that the fascicle
is highlighted. In this study, we designed an ellipse augmentation region as shown in Fig. 5. The focus
and vertex of the ellipse are user-defined. In practice, we usually only need to augment the top sub-
image containing muscle fascicles because the bottom sub-image containing middle aponeurosis is
often sufficiently clear. From Fig. 5, we can see that the accuracy of the detection is ensured after
applying the augmentation filter.
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Figure 5. This figure shows how the augmentation filter improves the detection accuracy in the presence of a high value noise cluster (a) and
an unclear cluster (b) .

Figure 6. This figure shows the designed viscous function.The vertical bars are samples, i.e., the real incremental data. The Kernel function
is the Kernel Density Estimation upon the samples using scikit-learn. .

Except for the disturbance with higher brightness that may affect the initial clustering, another case
may also cause the wrong initial clustering. As shown in Fig. 5(b), the fascicle is not clearly shown. This
is probably because this muscle fascicle is shadowed by the fat or connective tissues. From the results
in Fig. 5(b), we can see that after the augmentation is applied the muscle fascicle detection succeeds.

We can consider the augmentation filter as an assistant and optional procedure. When there are
some sliding movements between the US transducer and skin, the denoising procedure could eliminate
undesired noise to make the blur image clearer. However, extremely low and high denoising is likely to
fail the detection task since the filter may either remove useful information or not effective denoising. In
that case, an augmentation filter can also be applied to enhance the local region containing the targeted
fascicle to address the problem.

4.3. Viscosity
For some other situations, the fascicle barely showed in the image, so it cloud not be detected no
matter how the augmentation was designed. In this case, the investigator would guess the location of
the muscle fascicle based on the previous image. If the loss of detection is only occasional, the tracking
was assumed valid. To mimic this capability of the investigator, we designed a viscosity function, which
is defined as

𝜌∗𝑡 = 𝑟𝑡 𝜌𝑡 + (1 − 𝑟𝑡 ) 𝜌∗𝑡−1 (3)

where 𝜌𝑡 is the measured angle at time 𝑡, 𝜌∗
𝑡−1 and 𝜌∗𝑡 are the determined angles at 𝑡 − 1 and 𝑡,

respectively, and 𝑟𝑡 is the weight that is defined as
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𝑟𝑡 (𝜂𝑡 ) =


𝑒
− 1

2

(
𝜂𝑡 −ℎ+
𝜎+

)2

𝜂𝑡 ≥ ℎ+

1 −ℎ− ≤ 𝜂𝑡 < ℎ+

𝑒
− 1

2

(
𝜂𝑡 −ℎ−
𝜎−

)2

𝜂𝑡 < −ℎ−
(4)

where 𝜂𝑡 =
𝜌𝑡−𝜌∗𝑡−1
𝜌∗
𝑡−1

, and ℎ− , ℎ+, 𝜎− , 𝜎+ are parameters. Therefore, 𝜌∗𝑡 is used as the final angle. This
method means that if the fascicle is not shown properly, the detected PA is abnormal, and thus, the
weight is nearly 0. In this case, the previously-detected PA will be assigned to the final PA. If the PA is
normal, the weight of the current detection dominates.

We can see that (4) is a skew-Gaussian type distribution function. In this paper, we determined the
parameters depending on the real US imaging data collected from two able-bodied subjects (i.e., A02
and A03 that will be shown later). In the dataset, we designed a value 𝜂𝑡 ,𝑖 =

𝜌𝑡−𝜌𝑡−𝑖
𝜌𝑡−𝑖

, where 𝜌𝑡−𝑖 is
the human determined angle at 𝑖 steps/frames ahead. In this case, the 𝑖 was iterated from 1 to 10. The
data distribution, its corresponding kernel function, and our viscosity function is shown in Fig. 6. The
parameters, 𝜐 = {ℎ− , ℎ+, 𝜎− , 𝜎+}, for the viscosity function has to be selected such that the span width
of the viscosity function is wider than that of the kernel function. Therefore, the viscosity function
would only eliminate the outliers but not the normal data.

4.4. Fine Tuned Results
We selected the collected data from a trial when the ankle joint posture was set at 5◦ dorsiflexion (the
0◦ posture means that the shank is perpendicular to the sole of the foot), and the US imaging data
contained 20 images. We elaborately designated the parameters, 𝛩 = {𝛼, 𝜖0, 𝜖1, 𝑤 ; 𝜗}, and the shape of
the augmentation filter for each image. We found four types of augmentation filters and parameter sets
that gave a satisfactory result for fascicle detection. The first one was used for images 1-6, the second
was for 7-9, the third one was for 10-15, and the fourth one was for 16-20. The performance is shown
in Fig. 7(a).

It is worth noting that the augmentation filter may vary across different images. Therefore, to
facilitate automation, we applied the viscous function again to compute the weighted average, 𝜌𝑤𝑡 ,

𝜌𝑤𝑡 =

𝑛 𝑓∑
𝑛=1

𝑟𝑛𝑡 𝜌
𝑛
𝑡

𝑛 𝑓∑
𝑛=1

𝑟𝑛𝑡 + 𝛾

(5)

where 𝜌𝑛𝑡 is the angle detected using the n-th filter, 𝑛 𝑓 is the number of the filters, 𝛾 is a small value
that prevents the calculation result in (5) from blowing up, 𝑟𝑛𝑡 is the weight computed using (4) and set
𝜂𝑡 =

𝜌𝑛𝑡 −𝜌𝑤
𝑡−1

𝜌𝑤
𝑡−1

. If an augmentation filter is suitable for the image we have 𝑟𝑛𝑡 = 1. If it is not, 𝑟𝑛𝑡 will be
very small so that this angle is rolled out. We applied this method to the two other trials for this subject
with 5◦ dorsiflexion in flow (time sequence), and the results can be seen in Fig. 7 (b).

4.5. US Image Time Sequence Tracking
Finally, we also investigated the automatic muscle fascicle detection based on our newly-derived
pipeline with DBSCAN clustering. The promising results can guide us to apply the the method to
estimate PA using all clustering methods (DBSCAN, K-means, and HAC). The pseudo code of the algo-
rithm is shown in Table 1 for a clear presentation. Results from 3 representative trials when the ankle
joint posture was set at 5◦ and 15◦ dorsiflexion are shown in Fig. 8. Furthermore, to quantitatively evalu-
ate the PA tracking performance with the proposed method, the root mean square error (RMSE) values
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Figure 7. This figure shows the accuracy of (a) the detection of the fascicle orientation with fine tuned parameters using DBSCAN
clustering method and (b) the image flow with the viscosity function and the fine-tuned parameters. In (a), four sets of parameters were used
individually on different frames to obtain accurate estimations. In (b), the four sets of parameters were used simultaneously on all frames, and
the weighted average was taken to give the final estimation of the muscle orientations .

Figure 8. These representative figures show the PA detection using our method with DBSCAN, K-means, and HAC clustering, and the
benchmark methods, i.e., UltraTrack and ImageJ. The data shown here is from the first participant at dorsiflexion angles 5◦ (Trial 1 and 3)
and 15◦ (Trial 3). Also, the isometric ankle torques were plotted to show the high correlation with the PA sequences .

between the detection of using the proposed method and the human expert labeling from 9 repeated
trials when the ankle joint posture was set as 5◦, 10◦, and 15◦ dorsiflexion are summarized in Table 2.

4.6. Comparison with existing algorithms
The detected PA results by using the newly-proposed clustering method were compared with mature
benchmark techniques, e.g., UltraTrack and ImageJ.
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Table 1. This algorithm flow of how to detect the PA of the data stream.

Algorithm (Pseudo Code)
1: Set the parameters 𝛩𝑛, 𝑛 = 1, 2, . . . , 𝑁
2: Measure 𝜌𝑤0 manually
3: Select the clustering method (DBSCAN, K-means, or HAC)
4: Set augmentation ellipse region (Optional).
5: For each image, 𝑡 = 1, 2, ...𝑡 𝑓 , in the trial:
6: Set 𝑛 = 0, 𝜌𝑤𝑡 = 0
7: For 𝑖 = 1 to 𝑁:
8: trim the image to top and bottom sub-images
9: denoise both sub-images

10: do clustering to obtain 𝑺 for both sub-images
11: update 𝑺 to 𝑼
12: assign value 𝑉𝑖 to each 𝑈𝑖 in 𝑼
13: solve arg max

𝑈𝑖

{𝑉 : 𝑉 = 𝑉𝑖} to select the cluster 𝑈∗
𝑖

14: compute PA 𝜌𝑖 from 𝑈∗
𝑖

for top and bottom sub-images
15: compute 𝜌𝑤𝑡 using (5)
16: compute 𝜌∗𝑡 using (3)
17: End
18: End

Figure 9. The control panel and operation demonstration of using UltraTrack (optical flow).

4.6.1. UltraTrack
As introduced before, UltraTrack detects objects by tracking key points of figures. The operation of
using the Matlab toolbox is to upload the video stream of B-mode US images first, and then, create ROI
and select the starting/ending points for each interested muscle fascicle in the first image frame, and
then, start processing. The graphical user interface when using UltraTrack is shown in Fig. 9. In our
case, one ROI, one superficial muscle fascicle (upper red line), and the middle aponeurosis (lower red
line) were selected in the initial image frame of each trial. The tracked PA values from the US image
time sequence were used for comparison with the PA values by using the proposed clustering approach.
In addition, the RMSE values between the UltraTrack-derived PA and human expert labeled PA were
also calculated to evaluate the detection performance, as reported in Table 2.

4.6.2. ImageJ
B-mode ultrasound image videos from the TA muscle during isometric ankle dorsiflexion movement
were also processed utilizing ImageJ and statistically analyzed via Matlab. ImageJ’s open-source image
processing package, Fiji [Schindelin et al. (2012)], was used to analyze the orientation distribution of
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Figure 10. In the figure, (a) demonstrates the highlighted ROI (the ROI selected for cropping of the TA muscle fascicles),
macro-pre-processing ROI (the ROI in the image after the image went through the functions within the macro), and post DistributionJ
processing of an US image frame (the ROI after the DistributionJ function that can be used to determine the orientation distribution); (b)
demonstrates mean and standard deviation of the coefficient coefficient between the ImageJ detection angle and the ground truth across
different inclusion percentages.

the middle aponeurosis-like segments and muscle fascicle-like segments from both the lower half and
upper half of the TA muscle. Each image was cropped based on the ROI with the rectangle area section
tool to remove external information such as image edges and unrelated fascicles (Fig. 10.(a)). Accord-
ing to procedures in [Seynnes and Cronin (2020)], a custom macro that ran a series of functions was
followed to improve image clarity for better fascicle definition. The Subtract Background function
was run to remove large variations in the background intensities of the video. The Non-Local-Means-
Denoising and median filter was applied to remove extraneous noise, and then the video was converted
to 32-bits. The DistributionJ within the OrientationJ plug-in was then utilized to create a table with the
distribution of the orientation angle of the targeted aponeurosis and muscle fascicle. The TA muscle’s
PA was calculated and statistically analyzed via MATLAB. The PA value was calculated by taking the
weighted average from the top 5% to 50% (with an increment of 5%, defined as inclusion percentage)
of the selected pixel clouds that represent the middle aponeurosis and the TA muscle fascicle. The sum
of the weighted averages for the varying percentages of the middle aponeurosis and TA muscle fasci-
cle were then totaled to obtain the PA value of different weighted averages. The correlation coefficient
between the ImageJ-derived PA and the human expert label was calculated for each weighted average.
The quantitative results can be seen in Fig. 10.(b), where correlation coefficients are relatively higher
when selecting the top 5% and 10% of the pixel clouds for the weighted average PA calculation. There-
fore, we selected the top 5% and 10% as the representatives for the comparison. The RMSE values
between the ImageJ-derived PA and human expert labeled PA are reported in Table 2.

5. Result
From those PA tracking comparison results along the US image time sequence, we can observe that the
proposed method with DSCAN as the initial clustering method outperforms other algorithms, and the
UltraTrack outperforms ImageJ in our dataset. Quantitative results of the PA tracking RMSE between
the human expert labeling and the detection with different methods from multiple trials and multiple
ankle joint postures can be seen in Table 2. Therefore, we would select the proposed DSCAN-embedded
two-step clustering approach and the UltraTrack toolbox for further comparison testing.

Then, we tested our proposed method with DBSCAN and the UltraTrack on three able-bodied par-
ticipants, i.e., A01, A02, and A03. Each subject’s ankle joint initial dorsiflexion posture was set at three
different postures 5◦, 10◦, and 15◦, respectively. We tested three trials under each posture and plotted
the error between the detected PA and the human expert labeled ground truth in Fig. 12.
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Table 2. The PA detection results summary by using the proposed approach on one representative participant’s TA muscle during
the ankle joint at different postures.

Results of the PA Detection

Angle 5◦ RMSE [◦] Data Size

DBSCAN K-means HAC UltraTrack ImageJ-5% ImageJ-10%

Trial 1 0.419 1.140 0.723 1.939 4.714 6.169 20

Trial 2 0.539 1.171 0.374 2.170 3.373 4.771 26

Trial 3 0.484 1.220 1.210 2.525 3.797 4.138 24

Angle 10◦

Trial 1 0.358 0.357 0.994 1.698 2.424 3.848 15

Trial 2 0.892 1.143 0.980 0.934 2.817 3.863 25

Trial 3 1.053 0.632 0.539 1.649 2.787 3.357 23

Angle 15◦

Trial 1 0.647 1.134 1.800 1.892 4.077 4.278 20

Trial 2 1.118 0.489 0.538 2.729 3.848 6.327 19

Trial 3 0.523 0.300 0.494 2.115 4.553 5.671 20

Overall 0.727 0.948 0.941 1.951 3.598 4.713 192

Figure 11. This figure shows some representative tracking results. It also shows that even if the fascicles are correctly detected, there is still
a considerable error for the PA calculation .

From the figures we can see that the mean error for the three subjects using the proposed method
are 0.03◦, -0.55◦, and -0.63◦, respectively, while the standard deviation (the red lines) are 0.70◦, 0.94◦,
and 0.96◦, respectively. The mean error using the UltraTrack are 0.41◦, -1.40◦, and -0.76◦, respectively,
while the standard deviation (the red lines) are 1.10◦, 1.38◦, and 0.97◦, respectively. The figure shows
that the proposed method slightly outperforms the UltraTrack method in our dataset.

6. Discussion and conclusion
In this paper, we developed a clustering-based detection method, which mimics a human investigator in
terms of labeling the muscle fascicle on US images in unsupervised learning fashion. In this preliminary
study, we focused on detecting the orientation of the TA muscle’s fascicle and aponeurosis, and thus
calculating PA automatically.

The results collected by the proposed method were compared with those obtained by applying
benchmark techniques: the optical flow in UltraTrack and ImageJ. The performance of the proposed
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Figure 12. This figure shows the tracking error of the proposed method, shown in (a), and the ultratrack, shown in (b). In (a), the mean error
for the three subjects are 0.03◦, -0.55◦, and -0.63◦, respectively, while the standard deviation (the lines) are 0.70◦, 0.94◦, and 0.96◦,
respectively. In (b), the mean error for the three subjects are 0.41◦, -1.40◦, and -0.76◦, respectively, while the standard deviation (the lines)
are 1.10◦, 1.38◦, and 0.97◦, respectively.

clustering methods in our dataset is shown more precise in RMSE when compared to the benchmark
methods.

Although the preliminary study shows promising results for potential real-time implementation,
there are still some limitations given that the method is still at a rudimentary phase. Firstly, both Ultra-
Track and ImageJ can also measure the length of fascicle/aponeurosis, while our proposed method can
only measure the muscle fascicle/aponeurosis orientation. Also, the orientation detection is very sensi-
tive. For example, in the case shown in Fig. 11, even if the fascicle is correctly detected, the calculation
of PA may still have a non-neglectable error due to the high sensitivity of the muscle orientation. This
can perhaps explain why the PA tracking result with the proposed method looks less smoother than the
tracking results with the UltraTrack method. In fact, smoothness of the tracking result is an important
index because the PA is likely to be used for human joint movement intention prediction in a con-
tinuous manner, which is an innovative and non-invasive approach for human-machine interface for
implementing on rehabilitative and assistive devices. If the PA tracking smoothness is weak, the con-
tinuity of human joint movement intention prediction could be affected, thus deteriorate the effective
performance of those devices. The method is sensitive to parameter selection, including denoising fac-
tors, augmentation filters, viscous functions, etc. In this work, we tried our best to select parameters
for the proposed and benchmark methods that can deliver the best performance. But, arbitrary parame-
ters may lead to unsatisfactory results. Finally, the processing time is still too long to be implemented
in real-time in terms of feedback control system with higher control frequency. The US images were
collected at 20 frames per second, but the processing time for each image with DBSCAN, K-means,
and HAC methods can take around 0.2-0.4 seconds per image with an Intel Core i7 Processor (CPU).
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Potentially, the processing time will be further reduced by applying a graphical processing unit (GPU).
Nevertheless, the complexity of the proposed method is already low compared to the existing meth-
ods mentioned in the literature. For example, BLST is already a method with the lowest complexity,
𝑂

(
𝑇 · 𝑁2) , among all the aforementioned existing methods, where the variable 𝑇 denotes the number

of rotation that is usually comparable to the image size 𝑁 . Therefore, we can roughly estimate the com-
plexity of BLST to be 𝑂

(
𝑁3) , which is equivalent to HAC, i.e., the clustering method with the highest

complexity among the methods we investigated. There is also space for improvement in the experi-
ment design. In this paper, the image data was collected using isometric contraction, which may cause
muscle distortion. In future work, fixed-end contraction will be adopted [Raiteri and Hahn (2019)]. In
future work, we will also take the fascicle length into consideration. It requires an algorithm that can
precisely detect the boundary of the muscle fiber, especially the start and end. The missing part of the
muscle can be extrapolated, and the PA estimated by the methods presented in this paper may help with
this [Franchi et al. (2020)].

In conclusion, the proposed clustering-based detection method estimates the PA using US images
with high precision in our dataset. Additionally, it demonstrates that this method can mimic a human
investigator in terms of labeling the fascicle and aponeurosis muscles. Because of the various merits
(e.g., intelligent, robust, and flexible) that human investigators possess, the methods aiming to emulate
an expertise in inferring US images will be explored further in the future.

Supplementarymaterial. To view data and other supplementary material for this article, please visit http://dx.doi.org/10.1017/
wtc.2019.116.

Acknowledgments. We would like to thank Alison Myers and Ashwin Iyer for their help in experiments’ conduction and data
collection. We would also like to thank all participants for their involvement in the study.

Funding statement. This research was supported by NSF Career Award (grant number 2002261).

Competing interests. The authors declare no competing interests.

Ethical standards. The authors assert that all procedures contributing to this work comply with the ethical standards of the
relevant national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised
in 2008. The study was approved by the Institutional Review Board of North Carolina State University (protocol number 20602
and date of approval 02/10/2020).

Author contributions. X.B, Q.Z. and N.S. contributed to the conception and design of the study. N.S.acquired the funding. Q.Z.
and N.F. collected the data and performed data analysis. X.B. and J.W. investigated the existing methods, did literature survey,
and designed the architecture of the code. X.B. wrote the code. X.B., Q.Z. and N.F. abstracted and interpreted the results. X.B.,
Q.Z. and N.F. wrote the first draft. N.S. revised the manuscript and approved the final version.

References
Abràmoff, M. D., Magalhães, P. J., and Ram, S. J. (2004). Image processing with imagej. Biophotonics international, 11(7):36–

42.
Baroni, B. M., Geremia, J. M., Rodrigues, R., De Azevedo Franke, R., Karamanidis, K., and Vaz, M. A. (2013). Mus-

cle architecture adaptations to knee extensor eccentric training: rectus femoris vs. vastus lateralis. Muscle & nerve,
48(4):498–506.

Chang, K.-V., Wu, W.-T., Huang, K.-C., Jan, W. H., and Han, D.-S. (2018). Limb muscle quality and quantity in elderly adults
with dynapenia but not sarcopenia: an ultrasound imaging study. Exp. Gerontol., 108:54–61.

Cronin, N. J., Carty, C. P., Barrett, R. S., and Lichtwark, G. (2011). Automatic tracking of medial gastrocnemius fascicle length
during human locomotion. J. Appl. Physiol., 111(5):1491–1496.

Damon, B. M., Buck, A. K., and Ding, Z. (2011). Diffusion-tensor mri based skeletal muscle fiber tracking. Imaging in medicine,
3(6):675.

Darby, J., Hodson-Tole, E. F., Costen, N., and Loram, I. D. (2012). Automated regional analysis of b-mode ultrasound images of
skeletal muscle movement. J. Appl. Physiol., 112(2):313–327.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996). A density-based algorithm for discovering clusters in large spatial
databases with noise. In Kdd, volume 96, pages 226–231.

Farris, D. J. and Lichtwark, G. A. (2016). UltraTrack: Software for semi-automated tracking of muscle fascicles in sequences of
B-mode ultrasound images. Comput. Methods Programs Biomed., 128:111–118.

http://dx.doi.org/10.1017/wtc.2019.116
http://dx.doi.org/10.1017/wtc.2019.116


16 X. Bao et al.

Franchi, M. V., Fitze, D. P., Raiteri, B. J., Hahn, D., and Spörri, J. (2020). Ultrasound-derived biceps femoris long-head fascicle
length: extrapolation pitfalls. Medicine and Science in Sports and Exercise, 52(1):233–243.

Giannakou, E., Aggeloussis, N., and Arampatzis, A. (2011). Reproducibility of gastrocnemius medialis muscle architecture
during treadmill running. J. Electromyogr. Kinesiol., 21(6):1081–1086.

Gillett, J. G., Barrett, R. S., and Lichtwark, G. A. (2013). Reliability and accuracy of an automated tracking algorithm to measure
controlled passive and active muscle fascicle length changes from ultrasound. Comput. Methods Biomech. Biomed. Engin.,
16(6):678–687.

Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering algorithm. Journal of the royal statistical
society. series c (applied statistics), 28(1):100–108.

Jahanandish, M. H., Fey, N. P., and Hoyt, K. (2019). Lower-Limb Motion Estimation Using Ultrasound Imaging: A Framework
For Assistive Device Control. IEEE J. Biomed. Health Inform., pages 1–10.

Kawamoto, S., Imamoglu, N., Gomez-Tames, J. D., Kita, K., and Yu, W. (2014). Ultrasound imaging and semi-automatic analysis
of active muscle features in electrical stimulation by optical flow. In 2014 36th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society, pages 250–253. IEEE.

Kwah, L. K., Pinto, R. Z., Diong, J., and Herbert, R. D. (2013). Reliability and validity of ultrasound measurements of muscle
fascicle length and pennation in humans: a systematic review. Journal of applied physiology, 114(6):761–769.

Liu, Z., Chan, S.-C., Zhang, S., Zhang, Z., and Chen, X. (2019). Automatic muscle fiber orientation tracking in ultrasound images
using a new adaptive fading bayesian kalman smoother. IEEE Trans. Image Process.

Lukasová, A. (1979). Hierarchical agglomerative clustering procedure. Pattern Recognition, 11(5-6):365–381.
Marzilger, R., Legerlotz, K., Panteli, C., Bohm, S., and Arampatzis, A. (2018). Reliability of a semi-automated algorithm for

the vastus lateralis muscle architecture measurement based on ultrasound images. European journal of applied physiology,
118(2):291–301.

Mueller, N., Murthy, S., Tainter, C. R., Lee, J., Richard, K., Fintelmann, F. J., Grabitz, S. D., Timm, F. P., Levi, B., Kurth, T., et al.
(2016). Can sarcopenia quantified by ultrasound of the rectus femoris muscle predict adverse outcome of surgical intensive
care unit patients and frailty? a prospective, observational cohort study. Ann. Surg., 264(6):1116.

O’Brien, T. D., Reeves, N. D., Baltzopoulos, V., Jones, D. A., and Maganaris, C. N. (2010). Mechanical properties of the patellar
tendon in adults and children. J. Biomech., 43(6):1190–1195.

Raiteri, B. J. and Hahn, D. (2019). A reduction in compliance or activation level reduces residual force depression in human
tibialis anterior. Acta Physiologica, 225(3):e13198.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S.,
Schmid, B., et al. (2012). Fiji: an open-source platform for biological-image analysis. Nature methods, 9(7):676–682.

Seynnes, O. R. and Cronin, N. J. (2020). Simple muscle architecture analysis (sma): An imagej macro tool to automate
measurements in b-mode ultrasound scans. Plos one, 15(2):e0229034.

Ticinesi, A., Meschi, T., Narici, M. V., Lauretani, F., and Maggio, M. (2017). Muscle ultrasound and sarcopenia in older
individuals: a clinical perspective. J. Am. Med. Dir. Assoc., 18(4):290–300.

van der Zee, T. J. and Kuo, A. D. (2022). Timtrack: A drift-free algorithm for estimating geometric muscle features from
ultrasound images. PLoS One, 17(3):e0265752.

Van Hooren, B., Teratsias, P., and Hodson-Tole, E. F. (2020). Ultrasound imaging to assess skeletal muscle architecture during
movements: a systematic review of methods, reliability, and challenges. J. Appl. Physiol., 128(4):978–999.

Wang, X., Zhao, F., Liu, C., Guo, F., and Guo, J. (2019). Automatic detection and pennation angle measurement of muscle
fascicles in ultrasound images using belt linear summation transform. IEEE Access, 7:174391–174399.

Yuan, C., Chen, Z., Wang, M., Zhang, J., Sun, K., and Zhou, Y. (2020). Dynamic measurement of pennation angle of gas-
trocnemius muscles obtained from ultrasound images based on gradient radon transform. Biomedical Signal Processing and
Control, 55:101604.

Zhang, Q., Iyer, A., Kim, K., and Sharma, N. (2020a). Evaluation of non-invasive ankle joint effort prediction methods for use
in neurorehabilitation using electromyography and ultrasound imaging. IEEE Trans. Biomed. Eng.

Zhang, Q., Kim, K., and Sharma, N. (2020b). Prediction of Ankle Dorsiflexion Moment by Combined Ultrasound Sonography
and Electromyography. IEEE Trans. Neural Syst. Rehabil. Eng., 28(1):318–327.

Zhao, H. and Zhang, L.-Q. (2011). Automatic tracking of muscle fascicles in ultrasound images using localized radon transform.
IEEE Trans. Biomed. Eng., 58(7):2094–2101.

Zhou, G.-Q., Chan, P., and Zheng, Y.-P. (2015). Automatic measurement of pennation angle and fascicle length of gastrocnemius
muscles using real-time ultrasound imaging. Ultrasonics, 57:72–83.

Zhou, G.-Q. and Zheng, Y.-P. (2015). Automatic fascicle length estimation on muscle ultrasound images with an orientation-
sensitive segmentation. IEEE Trans. Biomed. Eng., 62(12):2828–2836.


	Introduction
	US Imaging data and ground truth acquisition
	Method
	US imaging preparation and pre-processing
	Trim
	Denoising
	Augmentation

	Initial clustering
	DBSCAN
	K-means
	HAC

	Re-clustering
	Target Muscle Selection

	Analysis on representative samples
	A Representative Image
	Augmentation Filter
	Viscosity
	Fine Tuned Results
	US Image Time Sequence Tracking
	Comparison with existing algorithms
	UltraTrack
	ImageJ


	Result
	Discussion and conclusion

