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1 Proof of Eq. (4)
Eq. (4) in the paper can be rigorously proven if an L2 loss is used,
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By setting the gradient to zero (this assumes during training, the neural network
can reach the exact solution at this point),
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2 The Rationale for Solving Ambiguity

First and foremost, it is essential to clarify that velocity ambiguity can solely
exist and be resolved in the training phase, not in the inference phase.
The key idea behind our approach can be summarized as follows: While conven-
tional VFI methods with time indexing rely on a one-to-many mapping, our
distance indexing learns an approximate one-to-one mapping, which resolves the
ambiguity during training. When the input-output relationship is one-to-many
during training, the training process fluctuates among conflicting objectives, ul-
timately preventing convergence towards any specific optimization goal. In VFI,
the evidence is the generation of blurry images in the inference phase. Once
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the ambiguity has been resolved using the new indexing method in the train-
ing phase, the model can produce significantly clearer results regardless of the
inference strategy used.

Indeed, this one-to-many ambiguity in training is not unique to VFI, but for
a wide range of machine learning problems. It is sometimes referred to as “mode
averaging” in the CommunityEI In some areas, researchers have come up with
similar methods [5}7].

A specific instantiation of this problem. Let us look at an example in text-to-
speech (TTS). The same text can be paired with a variety of speeches, and direct
training without addressing ambiguities can result in a “blurred” voice (a sta-
tistical average voice). To mitigate this, a common approach is to incorporate
a speaker embedding vector or a style embedding vector (representing different
gender, accents, speaking styles, etc.) during training, which helps reduce ambi-
guity. During the inference phase, utilizing an average user embedding
vector can yield high-quality speech output. Furthermore, by manipulat-
ing the speaker embedding vector, effects such as altering the accent and pitch
can also be achieved.

Here is a snippet from a high-impact paper Wang et al. |[5] which came up
with the style embedding in TTS:

Many TTS models, including recent end-to-end systems, only learn an
averaged prosodic distribution over their input data, generating less ex-
pressive speech — especially for long-form phrases. Furthermore, they
often lack the ability to control the expression with which speech is syn-
thesized.

Understanding this example can significantly help understand our paper, as there
are many similarities between the two, e.g., motivation, solution, and manipu-
lation.

A minimal symbolic example to help understand better: Assuming we want to
train a mapping function F from numbers to characters.
Training input-output pairs with ambiguity (F is optimized):

15 a1 Lp2 56250
F is optimized with some losses involving the input-output pairs above:

min  L(F(1),a) + L(F(1),b) + L(F(2),a) + L(F(2),b),
where L can be L1, L2 or any other kind of losses. Because the same input is
paired with multiple different outputs, the model F is optimized to learn an
average (or, generally, a mixture) of the conflicting outputs, which results in
blur at inference.

3 https://www.cs.toronto.edu/ hinton/coursera/lecture13/lec13.pdf
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Inference phase (F is fixed):
155 {a,b}2,2 55 {a,b}?
Training without ambiguity (F is optimized):
1 5a1 Dra2 Db Db

In the input-output pairs above, each input value is paired with exactly one out-
put value. Therefore, F is trained to learn a unique and deterministic mapping.
Inference phase (F is fixed):

1i>a,2i>b

Coming back to VFI. When time indexing is used, the same ¢ value is paired
to images where the objects are located at various locations due to the speed
and directional ambiguities. When distance mapping is used, a single d value is
paired to images where the objects are always at the same distance ratio, which
allows the model to learn a more deterministic mapping for resolving the speed
ambiguity.

It is important to note that fixing the ambiguity does not solve all the prob-
lems: At inference time, the “correct” (close to ground-truth) distance map is
not available. In this work, we show that it is possible to provide uniform dis-
tance maps as inputs to generate a clear output video, which is not perfectly
pixel-wise aligned with the ground truth. This is the reason why the proposed
method does not achieve state-of-the-art in terms of PSNR and SSIM in Tab. 1
of the paper. However, it achieves sharper frames with higher perceptual quality,
which is shown by the better LPIPS and NIQE.

We claim the “correct” distance map is hard to estimate accurately from
merely two frames since there are a wide range of possible velocities. If consid-
ering more neighboring frames like Xu et al. [6] (more observation information),
it is possible to estimate an accurate distance map for pixel-wise aligned inter-
polation, which we leave for future work.

Furthermore, manipulating distance maps corresponds to sampling other pos-
sible unseen velocities, i.e., 2D manipulation of frame interpolation, similar to
that mentioned TTS paper Wang et al. [5].

3 Additional Experiments and Analysis

Comparison of the fived-time setting. While the benefits of our proposed disam-
biguation strategies are best demonstrated on arbitrary-time VFI models, they
actually improve the performance of fixed-time models as well. Using RIFE [1]
as a representative example, we extend our comparison to the fixed-time training
paradigm, depicted in Fig.[1} The label [T] RIFE (Tri) refers to the model trained
on the triplet dataset from Vimeo90K |[8] employing time indexing. Conversely,
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INPUTS [T] RIFE (Tri) [D] RIFE (Tri)  [D] RIFE [D,R] RIFE GT

Fig. 1: Additional comparison of qualitative results. [T] RIFE (Tri) denotes RIFE
trained in a fixed time indexing paradigm (Vimeo90K triplet dataset [8]). [D] RIFE
(Tri) denotes the model trained using distance indexing. All models use uniform maps.

Table 1: Comparison on Vimeo90K triplet dataset. [T'] denotes the method trained
with traditional fixed time indexing paradigm. [D] denotes the distance indexing
paradigm. [-],, denotes inference with uniform map as time indexes.

| RIFE | IFRNet [2] | AMT-S | EMA-VFI [9] |
| 7] (D] [Dlu| [T] [D] [Pl| [T [D] [Dlu| [T] [D] [Dlu|
PSNR [35.61 36.04 35.18(35.80 36.26 35.14|35.97 36.56 35.21[36.50 37.13 36.21
SSIM?T [0.978 0.979 0.976|0.979 0.981 0.977/0.980 0.982 0.977|0.982 0.983 0.951

LPIPS||0.022 0.022 0.023|0.020 0.019 0.021{0.021 0.020 0.023{0.020 0.019 0.020
NIQEJ [5.249 5.225 5.224|5.256 5.245 5.225|5.308 5.293 5.288(5.372 5.343 5.335

[D] RIFE (Tri) indicates training on the same triplet dataset but utilizing our
distance indexing approach. Both [D] RIFE and [D, R] RIFE models are trained
on the septuplet dataset, consistent with our earlier comparison. Despite being
trained on varied datasets, it is evident that the arbitrary time model outper-
forms the fixed time model. However, the efficacy of distance indexing appears
restrained within the fixed-time training paradigm. This limitation stems from
the fact that deriving distance representation solely from the middle frame yields
a sparse distribution, making it challenging for the network to grasp the nuances
of distance. We delve deeper into the quantitative analysis of these findings in
Tab. [1} Compared to training arbitrary time models on the septuplet dataset,
the advantages of distance indexing become notably decreased when training
fixed time models on the triplet dataset.

Comparison of using perceptual loss. In addition to training with traditional
pixel losses based on L1 and L2 losses, we present the results of employing the
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Table 2: Comparison on the septuplet of Vimeo90K [8] using LPIPS loss [10]. We use
RIFE [1] as a representative example.

[T} [D]u [D7 R} u
PSNR 1+ 2719  26.71 26.72
SSIM 1 0.898 0.889 0.890

LPIPS| 0.061 0.065  0.064
NIQE ]  6.307 5.901  5.837

Table 3: Comparison with [Dg, ] scheme on Vimeo90K septuplet dataset. [Dq,y]| de-
notes training with two channel distance map with @ and y directions. [-], denotes
inference with uniform maps.

7] [Pl [D,Rlu  [Daylu [Day, Rlu

LPIPS] 0.105 0.092 0.086 0.091 0.087
NIQE], 6.663 6.344 6.220 6.296 6.220

more recent LPIPS loss [10] with a VGG backbone [4], as shown in Tab.
The non-reference perceptual quality metric, NIQE, shows notable improvement
across all variants. The results also consistently demonstrate the effectiveness
of our strategies in resolving velocity ambiguity. Besides, due to the direct op-
timization of LPIPS loss, the assumption of constant speed in uniform maps
affects the performance for this metric. This is why in the test results, [T] has a
lower LPIPS, while [D], and [D, R}, are slightly higher.

Two channel scheme. Comparison results with the two channel scheme, i.e., D;
with « and y directions, are shown in Tab. [3] The observations are as follows:
(1) [Dy,y]w outperforms [D],,, which makes sense since it accounts for both speed
and direction. (2) [D, R],, performs better than [D, ,],,. Our speculation is that
[R] benefits not only from addressing the directional ambiguity but also from
reducing the prediction difficulty via divide-and-conquer. (3) [Dy.y, R], does not
exceed [D, R],, showing that the iterative formulation is sufficient to resolve the
directional ambiguity. [D; ,],, has the potential to learn different trajectories
but cannot realize that potential since the trajectory distribution within a short
time is not sufficiently diverse. However, [D, ,], only involves increasing the
input channels and does not need to run iteratively. Thus, [D, ], is a better
choice for fast/lightweight frame interpolation.

Why did [R)] fail on AMT-S? As compared to the speed ambiguity, the direc-
tional ambiguity only has a minor impact to the interpolation quality due to
the short time span between frames. Merely employing iterative reference-based
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Fig. 2: User interface of user study.

estimation without tackling speed ambiguity [T, R] can result in the accumula-
tion of inaccuracies. This phenomenon is especially evident in AMT-S, which we
attribute to its scaled lookup operation of bidirectional 4D correlation volumes.
Cumulative errors are exacerbated in inaccurate iterative lookup operations.

Why NIQE performs better with uniform maps? Uniform maps tend to yield
better results due to smoothing. Nonuniform maps consist of unavoidable inac-
curacies from flow estimation, which may introduce unnatural details, resulting
in worse NIQE scores but are not noticeable to human perception.

4 Costs of Proposed Strategies

Distance indexing. Transitioning from time indexing ([T]) to distance indexing
([D]) does not introduce extra computational costs during the inference phase,
yet significantly enhancing image quality. In the training phase, the primary
requirement is a one-time offline computation of distance maps for image triplets.

Tterative reference-based estimation. Given that the computational overhead of
merely expanding the input channel, while keeping the rest of the structure
unchanged, is negligible, the computational burden during the training phase
remains equivalent to that of the [D] model. Regarding inference, the total con-
sumption is equal to the number of iterations x the consumption of the [D]
model. We would like to highlight that this iterative strategy is optional: Users
can adopt this strategy at will when optimal interpolation results are demanded
and the computational budget allows.

5 User Study Ul

As shown in Fig. we initially presented users with the input starting and
ending frames. Subsequently, the results from each model’s four distinct vari-
ants were displayed anonymously in a sequence, with the order shuffled for each
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presentation. Users were tasked with reordering the images by dragging them,
placing them from left to right based on their perceived quality, i.e., the best
image on the extreme left and the least preferred on the far right.

6

Demo

We have included a video demo (available in supplementary materials named
“supp.mp4”) to intuitively showcase the enhanced quality achieved through our
strategies. The video further illustrates the idea of manipulating object interpo-
lations and provides a guide on using the related web application.
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