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Abstract—Existing video frame interpolation (VFI) methods
blindly predict where each object is at a specific timestep ¢ (‘“time
indexing”’), which struggles to predict precise object movements.
Given two images of a baseball, there are infinitely many possible
trajectories: accelerating or decelerating, straight or curved.
This often results in blurry frames as the method averages out
these possibilities. Instead of forcing the network to learn this
complicated time-to-location mapping implicitly together with
predicting the frames, we provide the network with an explicit
hint on how far the object has traveled between start and
end frames, a novel approach termed “distance indexing”. This
method offers a clearer learning goal for models, reducing the
uncertainty tied to object speeds. We further observed that, even
with this extra guidance, objects can still be blurry especially
when they are equally far from both input frames (i.e., halfway
in-between), due to the directional ambiguity in long-range
motion. To solve this, we propose an iterative reference-based
estimation strategy that breaks down a long-range prediction into
several short-range steps. When integrating our plug-and-play
strategies into state-of-the-art learning-based models, they exhibit
markedly sharper outputs and superior perceptual quality in
arbitrary time interpolations, using a uniform distance indexing
map in the same format as time indexing without requiring extra
computation. Furthermore, we demonstrate that if additional la-
tency is acceptable, a continuous map estimator can be employed
to compute a pixel-wise dense distance indexing using multiple
nearby frames. Combined with efficient multi-frame refinement,
this extension can further disambiguate complex motion, thus
enhancing performance both qualitatively and quantitatively.
Additionally, the ability to manually specify distance indexing
allows for independent temporal manipulation of each object,
providing a novel tool for video editing tasks such as re-timing.
The code is available at https://zzh-tech.github.io/InterpAny-
Clearer/.

Index Terms—Video frame interpolation, Temporal super-
resolution, Disambiguation, Video editing

I. INTRODUCTION

IDEO frame interpolation (VFI) plays a crucial role in
Vcreating slow-motion videos [1]], video generation [2]],
prediction [3]], and compression [4]]. Directly warping the
starting and ending frames using the optical flow between
them can only model linear motion, which often diverges from
actual motion paths, leading to artifacts such as holes. To
solve this, learning-based methods have emerged as leading
solutions to VFI, which aim to develop a model, represented
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as JF, that uses a starting frame Iy and an ending frame I; to
generate a frame for a given timestep, described by:

It :-7:([07117t)' (1)

Two paradigms have been proposed: In fixed-time interpo-
lation [1], [5], the model only takes the two frames as
input and always tries to predict the frame at ¢ = 0.5. In
arbitrary-time interpolation [6], [7]], the model is further given
a user-specified timestep ¢ € [0, 1], which is more flexible at
predicting multiple frames in-between.

Yet, in both cases, the unsampled blank between the two
frames, such as the motion between a ball’s starting and
ending points, presents infinite possibilities. The velocities
of individual objects within these frames remain undefined,
introducing a velocity ambiguity, a myriad of plausible time-
to-location mappings during training. Incorporating additional
neighboring frames as input [8]] can partially restrict the solu-
tion space by imposing constraints on motion trajectories, but
it cannot fully resolve the ambiguity. We observed that velocity
ambiguity is a primary obstacle hindering the advancement of
learning-based VFI: Models trained using aforementioned time
indexing receive identical inputs with differing supervision
signals during training. As a result, they tend to produce
blurred and imprecise interpolations, as they average out the
potential outcomes.

Could an alternative indexing method minimize such con-
flicts? One straightforward option is to provide the optical flow
at the target timestep as an explicit hint on object motion.
However, this information is unknown at inference time,
which has to be approximated by the optical flow between
Iy and I, scaled by the timestep. This requires running
optical flow estimation on top of VFI, which may increase the
computational complexity and enforce the VFI algorithm to
rely on the explicitly computed but approximate flow. Instead,
we propose a more flexible distance indexing approach. In
lieu of an optical flow map, we employ a distance ratio map
Dy, where each pixel denotes how far the object has traveled
between start and end frames, within a normalized range of
0,1],

’]t = F (lo, [, motion hint) = I, = F (Iy, [1, Dy) ‘ 2

During training, D; is derived from optical flow ratios
computed from ground-truth frames. During inference, it
is sufficient to provide a uniform map as input, in the
exactly same way as time indexing methods, i.e., Di(z,y) =
t, Vx,y. However, the semantics of this indexing map have


https://zzh-tech.github.io/InterpAny-Clearer/
https://zzh-tech.github.io/InterpAny-Clearer/

JOURNAL OF KTEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021

VFI Model

(a) Training paradigm of time indexing

Fig. 1.

(b) Training paradigm of distance indexing

Comparison of time indexing and distance indexing training paradigms. (a) Time indexing uses the starting frame Iy, ending frame [;, and a

scalar variable ¢ as inputs. (b) Distance indexing replaces the scalar with a distance map D and optionally incorporates iterative reference-based estimation
(ITe 73 Dre f) to address velocity ambiguity, resulting in a notably sharper prediction.

shifted from an uncertain timestep map to a more deterministic
motion hint. Through distance indexing, we effectively solve
the one-to-many time-to-position mapping dilemma, fostering
enhanced convergence and interpolation quality.

Although distance indexing addresses the scalar speed ambi-
guity, the directional ambiguity of motion remains a challenge.
Empirically we found that, although learning-based video
frame interpolation can handle minor directional uncertainty
at a small timestep, the ambiguity becomes pronounced at
the temporal midway between the two input frames, i.e.,
t=0.5, as illustrated in Fig. [3[b). Inspired by iterative inference
paradigms in optical flow [9] and image generation [I0],
we introduce an iterative reference-based estimation strategy.
Rather than estimating the full motion field at once, our
approach decomposes the problem into incremental distance
steps. By propagating estimates from nearby to farther points,
we constrain the search space at each iteration, thereby mini-
mizing directional uncertainty and enhancing synthesis quality.

Our approach addresses challenges that are not bound to
specific network architectures. Indeed, it can be applied as
a plug-and-play strategy that requires only modifying the
input channels for each model, as demonstrated in Fig. [T} We
conducted extensive experiments on four existing VFI methods
to validate the effectiveness of our approach, which produces
frames of markedly improved perceptual quality. Moreover,
instead of using a uniform map, it is also possible to use a
spatially-varying 2D map as input to manipulate the motion of
objects. Paired with state-of-the-art segmentation models such
as Segment Anything Model (SAM) [11]}, this empowers users
to freely control the interpolation of any object, e.g., making
certain objects backtrack in time.

When using more than two input frames [8]], nearby frames
offer additional constraints that facilitate the computation of a
pixel-wise dense distance map. The methods discussed so far
employ a uniform distance map because a deterministic dis-
tance map cannot be derived from only two frames. Inspired by
continuous parametric optical flow estimation [12], we utilize
cubic B-splines and neural ordinary differential equations to
estimate a dense distance map from four input frames, which
improves our model’s performance across both perceptual and
pixel-centric metrics. Furthermore, we make a trainable copy
of the original interpolator architecture to refine the initial
two-frame interpolation results using information from two

additional frames I_; and I5. This multi-frame refiner module
is intended to fully harness the potential of additional frames,
thereby enhancing multi-frame interpolation quality.

In summary, our key contributions are: 1) Proposing dis-
tance indexing and iterative reference-based estimation to
address the velocity ambiguity and enhance the capabilities
of arbitrary time interpolation models; 2) Presenting an un-
precedented manipulation method that allows for customized
interpolation of any object. 3) Adopting a continuous distance
map estimator and proposing a multi-frame fusion architecture
to enhance interpolation quality across both perceptual and
pixel-centric metrics.

A preliminary version of this work was presented in [13],
where we focus on using a uniform distance map during
inference because an accurate, pixel-wise distance map cannot
be reliably calculated from two frames. Although using a
uniform distance map produced plausible results with better
perceptual quality, the predictions did not align with the
ground truth, resulting in lower performance on metrics such
as PSNR and SSIM. In this paper, we address this limitation by
using multiple frames (more than two) as input and introduce a
continuous distance map estimator that approximates the map
from nearby frames. We also present a simple yet effective
multi-frame refiner architecture for video frame interpolation.
Extensive experiments demonstrate that this approach signifi-
cantly enhances performance.

II. RELATED WORK
A. Video frame interpolation

1) General overview: Numerous VFI solutions rely on
optical flows to predict latent frames. Typically, these methods
warp input frames forward or backward using flow calculated
by off-the-shelf networks like [9], [I4]-[16] or self-contained
flow estimators like [[7]], [17], [18]]. Networks then refine the
warped frame to improve visual quality. SuperSlomo [6] uses
a linear combination of bi-directional flows for intermediate
flow estimation and backward warping. DAIN introduces
a depth-aware flow projection layer for advanced intermediate
flow estimation. AdaCoF [19] estimates kernel weights and
offset vectors for each target pixel, while BMBC and
ABME refine optical flow estimation. Large motion inter-
polation is addressed by XVFI through a recursive multi-
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(a) Speed ambiguity

Fig. 2. Velocity ambiguity. (a) Speed ambiguity. (b) Directional ambiguity.

scale structure. VFIFormer [23] employs Transformer archi-
tectures to model long-range pixel correlations, while VFI-
Mamba [24] adopts a Mamba-based architecture for efficient
sequence modeling. IFRNet [25]], RIFE [7]], and UPR-Net [26]
employ efficient pyramid network designs for high-quality,
real-time interpolation, with IFRNet and RIFE using leakage
distillation losses for flow estimation. Recently, more advanced
network modules and operations are proposed to push the
upper limit of VFI performance, such as the transformer-
based bilateral motion estimator of BiFormer [27]], a unifying
operation of EMA-VFI [17] to explicitly disentangle motion
and appearance information, and bi-directional correlation
volumes for all pairs of pixels of AMT [[18]]. On the other hand,
SoftSplat [28] and M2M [29]] actively explore the forward
warping operation for VFI. To further improve perceptual
clarity in video frame interpolation, FILM [30] introduces
perceptual losses during training, while uncertainty-aware and
adaptive interpolation methods have also been proposed to
better handle ambiguous regions [31f], [32]]. More recently,
diffusion-based video frame interpolators, such as LDMVFI
[33] and SVDKFI [34], have leveraged generative priors to
enhance visual quality but still face challenges such as high
computational costs and slow runtimes.

Other contributions to VFI come from various perspec-
tives. For instance, Xu et al. [8], [35] leverage accelera-
tion information from nearby frames, VideoINR [36] is the
first to employ an implicit neural representation, and Lee et
al. |37] explore and address discontinuity in video frame
interpolation using figure-text mixing data augmentation and
a discontinuity map. Flow-free approaches have also attracted
interest. SepConv [38] integrates motion estimation and pixel
synthesis, CAIN [39] employs the PixelShuffle operation with
channel attention, and FLAVR [40] utilizes 3D space-time
convolutions. Additionally, specialized interpolation methods
for anime, which often exhibit minimal textures and exagger-
ated motion, are proposed by Animelnterp [41] and Chen et
al. [42]. On the other hand, motion induced blur [43[]-[45]],
shutter mode [46[—[48]], and event camera [49]], [50] are also
exploited to achieve VFI. For a more comprehensive overview
of recent advances in video frame interpolation, we refer
readers to the survey by Kye et al. [S1].

2) Learning paradigms: One major thread of VFI methods
train networks on triplet of frames, always predicting the
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(b) Directional ambiguity

central frame. Iterative estimation is used for interpolation
ratios higher than x2. This fixed-time method often accu-
mulates errors and struggles with interpolating at arbitrary
continuous timesteps. Hence, models like SuperSloMo [6],
DAIN [1], BMBC [20], EDSC [52], RIFE [[7], IFRNet [25]],
EMA-VFI [17], and AMT [18] have adopted an arbitrary
time interpolation paradigm. While theoretically superior, the
arbitrary approach faces challenges of more complicated time-
to-position mappings due to the velocity ambiguity, resulting
in blurred results. This study addresses velocity ambiguity in
arbitrary time interpolation and offers solutions.

Prior work by Zhou et al. [53]] identified motion ambiguity
and proposed a texture consistency loss to implicitly ensure
interpolated content resemblance to given frames. In contrast,
we explicitly address velocity ambiguity and propose solu-
tions. These innovations not only enhance the performance of
arbitrary time VFI models but also offer advanced manipula-
tion capabilities. Additionally, we demonstrate that leveraging
information from nearby frames through a multi-frame refiner
module, combined with continuous indexing map estimation,
can further improve interpolation quality.

3) Segment anything: The emergence of Segment Anything
Model (SAM) [11] has marked a significant advancement
in the realm of zero-shot segmentation, enabling numerous
downstream applications including video tracking and segmen-
tation [54], breakthrough mask-free inpainting techniques [55]],
and interactive image description generation [56]]. By spec-
ifying the distance indexing individually for each segment,
this work introduces a pioneering application to this growing
collection: Manipulated Interpolation of Anything.

III. VELOCITY AMBIGUITY

In this section, we begin by revisiting the time indexing
paradigm. We then outline the associated velocity ambiguity,
which encompasses both speed and directional ambiguities.

Fig. 2] (a) shows the example of a horizontally moving
baseball. Given a starting frame and an ending frame, along
with a time indexing variable ¢ = 0.5, the goal of a VFI
model is to predict a latent frame at this particular timestep,
in accordance with Eq. (T).

Although the starting and ending positions of the baseball
are given, its location at ¢ = 0.5 remains ambiguous due to
an unknown speed distribution: The ball can be accelerating
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Fig. 3. Disambiguation strategies for velocity ambiguity. (a) Distance indexing. (b) Iterative reference-based estimation.
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Fig. 4. Calculation of distance map for distance indexing. Vo is the estimated optical flow from Io to Iz by RAFT [9], and V1 is the optical flow from

Ig to I7.

or decelerating, resulting in different locations. This ambiguity
introduces a challenge in model training as it leads to multiple
valid supervision targets for the identical input. Contrary to the
deterministic scenario illustrated in Eq. (I), the VFI function
F is actually tasked with generating a sampled sequence of
plausible frames within the distribution derived from the same
input frames and time indexing. This can be expressed as:

{1}, I7,..., 17} = F(Io, L1, t), 3)

where n is the number of plausible frames. Empirically, the
model, when trained with this ambiguity, tends to produce a
weighted average of possible frames during inference. While
this minimizes the loss during training, it results in blurry
frames that are perceptually unsatisfying to humans, as shown
in Fig. (1| (a). This blurry prediction I, can be considered as
an average over all the possibilities if an Ly loss is used:

I, = Er,mr (10,10, L] (See details in Appendix) (4)

For other losses, Eq. (@) no longer holds, but we empirically
observe that the model still learns an aggregated mixture of
training frames which results in blur (RIFE and EMA-
VFI : Laplacian loss, i.e., L1 loss between the Laplacian
pyramids of image pairs; IFRNet [25] and AMT [I8]: Char-
bonnier loss).

Indeed, not only the speed but also the direction of motion
remains indeterminate, leading to what we term as “directional
ambiguity.” This phenomenon is graphically depicted in Fig. 2]
(b). This adds an additional layer of complexity in model train-
ing and inference. We collectively refer to speed ambiguity and
directional ambiguity as velocity ambiguity.

So far, we have been discussing the ambiguity for the fixed
time interpolation paradigm, in which ¢ is set by default to

0.5. For arbitrary time interpolation, the ambiguity becomes
more pronounced: Instead of predicting a single timestep,
the network is expected to predict a continuum of timesteps
between 0 and 1, each having a multitude of possibilities.
This further complicates learning. Moreover, this ambiguity
is sometimes referred to as mode averaging, which has been
studied in other domains [57]]. See Appendix for details.

IV. DISAMBIGUATION STRATEGIES

In this section, we introduce two innovative strategies,
namely distance indexing and iterative reference-based estima-
tion, aimed at addressing the challenges posed by the velocity
ambiguity. Designed to be plug-and-play, these strategies can
be seamlessly integrated into any existing VFI models without
necessitating architectural modifications, as shown in Fig. |I|
(b).

In traditional time indexing, models intrinsically deduce an
uncertain time-to-location mapping, represented as D:

Iy = F(Io, I, D(t)). (&)

This brings forth the question: Can we guide the network to
interpolate more precisely without relying on the ambiguous
mapping D(t) to decipher it independently? To address this,
we introduce a strategy to diminish speed uncertainty by
directly specifying a distance ratio map (D) instead of the
uniform timestep map. This is termed as distance indexing.
Consequently, the model sidesteps the intricate process of
deducing the time-to-location mapping:

It:F(107IlaDt)' (6)
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A. Distance indexing

We utilize an off-the-shelf optical flow estimator, RAFT [9],
to determine the pixel-wise distance map, as shown in Fig. 4
Given an image triplet {Iy,I1,1I;}, we first calculate the
optical flow from Iy to I;, denoted as V., and from I,
to I; as V1. At each pixel (x,y), we project the motion
vector Vo_,¢(z,y) onto Vo_s1(z,y). The distance map is then
defined as the ratio between the projected Vo_,:(z,y) and

Vosi(z,y):

VvV z,y)-V x,
Dt(z,y): O%t( y) Oal( y)

Voo (z,y)|?

where 6 denotes the angle between the two. By directly
integrating D, the network achieves a clear comprehension
of distance during its training phase, subsequently equipping
it to yield sharper frames during inference, as showcased in
Fig. 3] (a).

During inference, the algorithm does not have access to
the exact distance map since I; is unknown. In practice,
we notice it is usually sufficient to provide a uniform map
D, = t, similar to time indexing. Physically this encourages
the model to move each object at constant speeds along their
trajectories. We observe that constant speed between frames
is a valid approximation for many real-world situations. In
Section [VI, we show that even though this results in pixel-
level misalignment with the ground-truth frames, it achieves
significantly higher perceptual scores and is strongly preferred
in the user study. Precise distance maps can be computed
from multiple frames, which can potentially further boost the
performance. See a detailed discussion in Appendix.

; )

B. Iterative reference-based estimation

While distance indexing addresses speed ambiguity, it omits
directional information, leaving directional ambiguity unre-
solved. Our observations indicate that, even with distance
indexing, frames predicted at greater distances from the start-
ing and ending frames remain not clear enough due to this
ambiguity. To address this, we propose an iterative reference-
based estimation strategy, which divides the complex interpo-
lation for long distances into shorter, easier steps. This strategy
enhances the traditional VFI function, F, by incorporating a
reference image, I.r, and its corresponding distance map, Des.
Specifically, the network now takes the following channels as
input:

It :-F(IO>IlaDt7Iref,Dref)~ (8)

In the general case of N steps, the process of iteration is
as follows:

Iivayeyn = FLo, I, Diipryens Leyn, Dygn ), (9)
where i € {0,1,..., N — 1}. For example, if we break the
estimation of a remote step ¢ into two steps:

L/ = F(Io, I1, Dy )2, Io, Do),
I = ]:(107]17Dt71t/2,Dt/2)'

(10)
(1)

Importantly, in every iteration, we consistently use the starting
and ending frames as reliable appearance references, prevent-
ing divergence of uncertainty in each step. By dividing a

long step into shorter steps, the uncertainty in each step is
reduced, as shown in Fig. |§| (b). While fixed time models
also employ an iterative method in a bisectioning way during
inference, our strategy progresses from near to far, ensuring
more deterministic trajectory interpolation. This reduces errors
and uncertainties tied to a single, long-range prediction. See
more on the rationale for solving ambiguities in Appendix.

VFIModel | |
Refiner ¥ ool

Fig. 5. Multi-frame fusion architecture with continuous map estimator.

V. LEVERAGING INFORMATION FROM NEARBY FRAMES

In this section, we first introduce a continuous indexing
map estimator to achieve pixel-wise distance map estimation.
Next, we demonstrate how to reuse the original interpolation
architecture to fuse nearby frames for enhancing interpolation
quality. The complete framework is illustrated in Fig. [3]

A. Pixel-wise distance map estimation

To achieve a continuous indexing map estimator, we adopt
the pretrained model introduced in CPFlow [12]]. CPFlow
takes a sequence of images as input (four in our case) and
predicts the optical flow from the initial frame to any arbitrary
timestamp within the sequence. Specifically, it models each
pixel’s motion trajectory using cubic B-splines, enabling dense
and temporally continuous flow estimation. Given normalized
time ¢ € [0, 1], the displacement of a pixel is defined as:

N-1
Voo =Y Bix(t)P;, (12)
i=0
where P; are learnable control points and B; j(t) are spline
basis functions defined recursively [12]. To enhance temporal
consistency, the model employs a Neural Ordinary Differential
Equation (NODE) module in combination with ConvGRU,
where the hidden feature state h(t) evolves according to:
t
T = 1000, h0) =htto) + [ 1.7
i (13)
The hidden state h(t) is refined with frame-specific fea-
tures &; via ConvGRU: h(t) = ConvGRU(h(t),e;). The
model then computes multi-scale correlation volumes between
the reference feature h(0) and h(t), denoted by C(t) =
Corr(h(0), h(t)). These correlations are used in an iterative
decoder to update the control points of the spline as:

PP =Pl 4 AP (C(1), (14)
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where s is the iteration index. The final continuous optical
flow V_,; is reconstructed from the refined control points
using the spline formulation above. This continuous formu-
lation allows the model to produce high-fidelity indexing
maps using Eq. for arbitrary interpolation times D; =
Vol cos8/ [[Vooal-

B. Multi-frame refiner

We further design a multi-frame fusion module to leverage
the relevant pixel appearance information beyond the two
adjacent frames. As a brief review, flow-based VFI models [7]]
typically adhere to the following formulation:

LI, M = F(Iy, I, Dy), (15)

where M is a one-channel blending mask, and I, and I,
denote the warped images derived from Iy and I; using the
predicted optical flows. The final interpolated frame I; is
obtained by:

L=MoLl+(1-M) ol (16)

An additional residual term is often included which is omitted
here. To adapt the model to accept four consecutive frames
as input while maintaining plug-and-play compatibility with
various VFI models, we introduce a simple yet effective
framework: we create a trainable copy of the two-frame VFI
model F’, which accepts the additional frames I_; and I,
along with a new distance map D} computed relative to I_;
and I,. Additionally, the initially interpolated frame I; is
provided, enabling the network to refine the result by utilizing
this supplementary information:

L0, M = F(I_1, I, D, 1), (17)

where I;+,I;_ are warped version of I_j,Is respectively.
M' = [My, Ms, M3] is a three-channel blending mask such
that M7 + M5 4+ M3 = 1 at each pixel, corresponding to I/+,
Iy, and I;_. The final refined frame I] is then computed as:

I=MOL +MoL+Ms0OI,~ (18)

Notice that we directly use the interpolated frame I; instead of
latent features as network input to ensure compatibility with
different VFI models.

C. Model tuning

During training, we first freeze the parameters of the two-
frame VFI model F and the continuous map estimator. Only
the refiner F' is updated during this stage, using the same
training configuration as the original model. This setup enables
the refiner to learn how to enhance interpolation by leveraging
information from more distant adjacent frames. Next, we
freeze the parameters of the pretrained map estimator and
jointly optimize both the VFI model F and the proposed
refiner 7. This approach enables the entire system to adapt to
indexing maps derived from optical flow predicted by CPFlow.
We experimented with various training strategies and loss
functions to evaluate their effectiveness (see Section [VL-I).

VI. EXPERIMENT
A. Implementation

We leveraged the plug-and-play nature of our distance
indexing and iterative reference-based estimation strategies
to seamlessly integrate them into influential arbitrary time
VFI models such as RIFE [7] and IFRNet [25]], and state-
of-the-art models including AMT [18|] and EMA-VFI [17].
To further strengthen the empirical evidence, we additionally
validated the effectiveness of distance indexing on a diffusion-
based model, LDMVFI [33], and a representative multi-frame
method, VFI-Transformer [58]. We adhere to the original
hyperparameters for each model for a fair comparison and
implement them with PyTorch [59]. For training, we use
the septuplet dataset from Vimeo90K [60]. The septuplet
dataset comprises 91,701 seven-frame sequences at 448 x 256,
extracted from 39,000 video clips. For evaluation, we use
both pixel-centric metrics like PSNR and SSIM [61]], and
perceptual metrics such as reference-based LPIPS [62] and
non-reference NIQE [63]]. Concerning the iterative reference-
based estimation strategy, D,.; during training is calculated
from the optical flow derived from ground-truth data at a time
point corresponding to a randomly selected reference frame,
like ¢/2. In the inference phase, we similarly employ a uniform
map for reference, for example, setting D,y = t/2.

B. Qualitative comparison

1) Qualitative analysis: We conducted a qualitative anal-
ysis on different variants of each arbitrary time VFI model.
We evaluate the base model, labeled as [T, against its en-
hanced versions, which incorporate distance indexing ([D]),
iterative reference-based estimation ([T, R]), or a combination
of both ([D, R]), as shown in Fig. [f| We observe that the [T]
model yields blurry results with details difficult to distinguish.
Models with the distance indexing ([D]) mark a noticeable
enhancement in perceptual quality, presenting clearer interpo-
lations than [T']. In most cases, iterative reference ([T, R]) also
enhances model performance, with the exception of AMT-S.
As expected, the combined approach [D, R] offers the best
quality for all base models including AMT-S. This highlights
the synergistic potential of distance indexing when paired
with iterative reference-based estimation. Overall, our findings
underscore the effectiveness of both techniques as plug-and-
play strategies, capable of significantly elevating the qualitative
performance of cutting-edge arbitrary time VFI models.

2) User study: To validate the effectiveness of our pro-
posed strategies, we further conducted a user study with 30
anonymous participants. Participants were tasked with ranking
the interpolation quality of frames produced by four model
variants: [T], [D], [T, R], and [D, R]. See details of user study
Ul in Appendix. The results, presented in Fig.[/] align with our
qualitative and quantitative findings. The [D, R] model variant
emerged as the top-rated, underscoring the effectiveness of our
strategies.

C. Quantitative comparison

1) Convergence curves: To further substantiate the efficacy
of our proposed strategies, we also conducted a quantitative
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Fig. 6. Comparison of qualitative results. [T']: original arbitrary time VFI models using time indexing. [D].: models trained using our distance indexing,
then inference using uniform maps. [T, R]: models using time indexing with iterative reference-based estimation. [D, R],,: models trained using both distance
indexing and iterative reference-based estimation, then inference using uniform maps.
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Fig. 7. User study. The horizontal axis represents user rankings, where #1 is the best and #4 is the worst. The vertical axis indicates the percentage of times
each model variant received a specific ranking. Each model variant was ranked an equal number of times. The model [D, R] emerged as the top performer.

All models use uniform maps.
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Fig. 8. Convergence curves. [T'] denotes traditional time indexing. [D] denotes the proposed distance indexing. [R] denotes iterative reference-based estimation.

TABLE I
COMPARISON ON VIMEO90K SEPTUPLET DATASET. [T'] DENOTES THE METHOD TRAINED WITH TRADITIONAL ARBITRARY TIME INDEXING PARADIGM.
[D] AND [R] DENOTE THE DISTANCE INDEXING PARADIGM AND ITERATIVE REFERENCE-BASED ESTIMATION STRATEGY, RESPECTIVELY. [R] USES 2
ITERATIONS BY DEFAULT. [-],, DENOTES INFERENCE WITH UNIFORM MAP AS TIME INDEXES. WE UTILIZE THE FIRST AND LAST FRAMES AS INPUTS TO
PREDICT THE REST FIVE FRAMES. THE BOLD FONT DENOTES THE BEST PERFORMANCE IN CASES WHERE COMPARISON IS POSSIBLE. WHILE THE GRAY
FONT INDICATES THAT THE SCORES FOR PIXEL-CENTRIC METRICS, PSNR AND SSIM, ARE NOT CALCULATED USING STRICTLY ALIGNED
GROUND-TRUTH AND PREDICTED FRAMES.

\ RIFE \ IFRNet \ AMT-S \ EMA-VFI \

| 7 ) R | 1 (bl (DR | (7] [Pl DR | 1] [Pl  [DR] |
PSNRT | 2822 2920 28.84 2826 29.25 28.55 2852 29.61 2891 2941 30.29 25.10
SSIMT | 0912  0.929 0.926 0915 0931 0.925 0920  0.937 0.931 0928  0.942 0.858
LPIPS| | 0.105  0.092 0.081 0.088  0.080 0.072 0.101  0.086 0.077 0.086  0.078 0.079
NIQE| | 6.663 6475 6.286 6422 6342 6.241 6.866  6.656 6.464 6736 6.545 6.241

| (7] [Dlu  [D,Rlu | [T] [Dlu  [D,Rlu | [T] [Dlu  [D,Rlu | [T] [Dla [D,Rlu_|
PSNRT | 2822 2755 2741 2826  27.40 27.13 2852 2733 27.17 2941 2824 24.73
SSIMT | 0912 0.902 0.901 0915 0.902 0.899 0920 0.902 0.902 0928 0912 0.851
LPIPS| | 0.105  0.092 0.086 0.088  0.083 0.078 0.101  0.090 0.081 0.086  0.079 0.081
NIQE| | 6663  6.344 6.220 6422 6.196 6.167 6.866  6.452 6.326 6.736 6457 6.227

analysis. Fig. [§] shows the convergence curves for different
model variants, i.e., [T], [D], and [D, R]. The observed trends
are consistent with our theoretical analysis from Section [[V}
supporting the premise that by addressing velocity ambiguity,
both distance indexing and iterative reference-based estimation
can enhance convergence limits.

2) Comparison on Vimeo90K septuplet dataset: In Table|[l]
we provide a performance breakdown for each model variant.
The models [D] and [D, R] in the upper half utilize ground-
truth distance guidance, which is not available at inference
in practice. The goal here is just to show the achievable
upper-bound performance. On both pixel-centric metrics such
as PSNR and SSIM, and perceptual measures like LPIPS
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TABLE II
ABLATION STUDY OF THE NUMBER OF ITERATIONS ON VIMEO90K SEPTUPLET DATASET. [-]# DENOTES THE NUMBER OF ITERATIONS USED FOR
INFERENCE.
\ RIFE [7] \ IFRNet [25] \ AMTS (18] \ EMA-VFI [17] \
D, Rlu | [I' [ (2 T [1° [P T [1° [° T [1° [1° |
LPIPS| 0.093 0.086 0.085 0.085 0.078 0.078 0.086 0.081 0.081 0.084 0.081 0.080
NIQE| 6.331 6.220 6.186 6.205 6.167 6.167 6.402 6.326 6.327 6.303 6.227 6.211
(T,R] | []' [ [P | [ [ [ | [ [1° [P T [1° [1° |
LPIPS| 0.103 0.087 0.087 0.091 0.084 0.084 0.106 0.135 0.157 0.088 0.083 0.085
NIQE| 6.551 6.300 6.206 6.424 6.347 6.314 6.929 7.246 7.502 6.404 6.280 6.246
and NIQE, the improved versions [D] and [D, R] outperform TABLE III
the base model [T] Notably, the combined model [D,R] COMPARISON ON X4K1000FPS [22] FOR X 16 INTERPOLATION WITH
. . . 7 o RIFE [7]].
using both distance indexing and iterative reference-based A
estlrpatlon strategies perform§ superior in perceptual metrics, 7] (Dl D, .
particularly NIQE. The superior pixel-centric scores of model -
D D . C g PSNR 1 31.04 31.60 31.52
[D] compared to model [D, R] can be attributed to the indirect SSIM 1 0910 0914 0.922
estimation (2 iterations) in the latter, causing slight misalign- LPIPS | 0.104 0.094 0.079
NIQE | 7.215 6.953 6.927

ment with the ground-truth, albeit with enhanced details.

In realistic scenarios where the precise distance map is
inaccessible at inference, one could resort to a uniform map
akin to time indexing. The bottom segment of Table || shows
the performance of the enhanced models [D] and [D, R],
utilizing identical inputs as model [T']. Given the misalignment
between predicted frames using a uniform distance map and
the ground-truth, the enhanced models do not outperform the
base model on pixel-centric metrics. However, we argue that
in most applications, the goal of VFI is not to predict pixel-
wise aligned frames, but to generate plausible frames with high
perceptual quality. Furthermore, pixel-centric metrics are less
sensitive to blur [62], the major artifact introduced by velocity
ambiguity. The pixel-centric metrics are thus less informative
and denoted in gray. On perceptual metrics (especially NIQE),
the enhanced models significantly outperforms the base model.
This consistency with our qualitative observations further
validates the effectiveness of distance indexing and iterative
reference-based estimation.

3) Ablation study of the number of iterations: Table
offers an ablation study on the number of iterations and the
efficacy of a pure iterative reference-based estimation strategy.
The upper section suggests that setting iterations at two
strikes a good trade-off between computational efficiency and
performance. The lower segment illustrates that while iterative
reference-based estimation generally works for time indexing,
there are exceptions, as observed with AMT-S. However, when
combined with distance indexing, iterative reference-based
estimation exhibits more stable improvement, as evidenced
by the results for [D, R],. This is consistent with qualitative
comparison.

4) Comparison on other benchmarks: The septuplet set of
Vimeo90K [60] is large enough to train a practical video
frame interpolation model, and it represents the situations
where the temporal distance between input frames is large.
Thus, Vimeo90K (septuplet) can well demonstrate the velocity
ambiguity problem that our work aims to highlight. We further

show x 16 interpolation on X4K1000FPS with larger temporal
distance in Table The results highlight that the benefits of
our strategies are more pronounced with increased temporal
distances.

TABLE IV
COMPARISON ON VIMEO90K [[60]] USING GMFLOW [64]] FOR DISTANCE
MAP CALCULATION WITH RIFE [7].

7] [D]u [D, Rlu
PSNR 1 28.22 27.29 26.96
SSIM 1 0.912 0.898 0.895
LPIPS | 0.105 0.101 0.092
NIQE | 6.663 6.449 6.280

5) Other optical flow estimator: We also employ GM-
Flow [64] for the precomputation of distance maps, enabling
an analysis of model performance when integrated with alter-
native optical flow estimations. The results are as shown in
Table Our strategies still lead to consistent improvement
on perceptual metrics. However, this more recent and perfor-
mant optical flow estimator does not introduce improvement
compared to RAFT [9]. A likely explanation is that since
we quantify the optical flow to [0, 1] scalar values for better
generalization, our training strategies are less sensitive to the
precision of the optical flow estimator.

6) Comparison of using perceptual loss: In addition to
training with traditional pixel losses based on L1 and L2
losses, we present the results of employing the more recent
LPIPS loss [62] with a VGG backbone [[65], as shown in
Table [V] The non-reference perceptual quality metric, NIQE,
shows notable improvement across all variants. The results
also consistently demonstrate the effectiveness of our strategies
in resolving velocity ambiguity. Besides, due to the direct
optimization of LPIPS loss, the assumption of constant speed
in uniform maps affects the performance for this metric. This
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INPUTS

Fig. 9. Comparison on Vimeo90K Septuplet with LDMVFI [33].

TABLE V
COMPARISON ON THE SEPTUPLET OF VIMEO90K [[60]] USING LPIPS LOSS
[[62]]. WE USE RIFE [[7] AS A REPRESENTATIVE EXAMPLE.

7] [D]u [D, Rlu
PSNR 1 27.19 26.71 26.72
SSIM 1 0.898 0.889 0.890
LPIPS | 0.061 0.065 0.064
NIQE | 6.307 5.901 5.837

is why in the test results, [T] has a lower LPIPS, while [D],
and [D, R], are slightly higher.

7) Temporal consistency: We have further evaluated models
using FVD [66] and VBench [67]. As shown in Table
replacing time indexing with distance indexing consistently
improves FVD scores as well as VBench metrics related
to subject consistency, background consistency, and overall
imaging quality. We notice that the motion smoothness metric
in VBench [67] shows limited discriminative power for video
frame interpolation. These results indicate that reducing veloc-
ity ambiguity not only enhances per-frame perceptual quality
but also leads to more temporally coherent and stable video
interpolation.

D. Evaluating distance indexing on diffusion-based baseline

We further evaluate diffusion-based VFI models, which
are known for their strong generative capacity. Since SVD-
KFI [34] directly generates a fixed sequence of multiple frames
in a single pass, we adopt LDMVFI [33]] for evaluation,
whose formulation is more compatible with our interpolation
setting. As reported in Table [VIIl even though diffusion
models may partially mitigate ambiguity through generative
priors, replacing time indexing with distance indexing still
leads to further improvements. We also provide a qualitative
comparison in Fig. 0] These results indicate that velocity
ambiguity remains relevant for diffusion-based approaches and
that distance indexing provides complementary benefits.

E. Evaluating distance indexing on multi-frame baseline

We also evaluate a representative multi-frame input
method, Video Frame Interpolation Transformer (VFI-
Transformer) [58]. As shown in Table [VII] and Fig. [I0]
distance indexing also improves performance in the multi-
frame setting, confirming that additional temporal context
alone does not fully eliminate velocity ambiguity and that the
proposed strategy remains beneficial.

FE. 2D manipulation of frame interpolation

Beyond simply enhancing the performance of VFI mod-
els, distance indexing equips them with a novel capability:
tailoring the interpolation patterns for each individual object,
termed as “manipulated interpolation of anything”. Fig. [IT]
demonstrates the workflow. The first stage employs SAM [[11]]
to produce object masks for the starting frame. Users can then
customize the distance curve for each object delineated by
the mask, effectively controlling its interpolation pattern, e.g.,
having one person moving backward in time. The backend of
the application subsequently generates a sequence of distance
maps based on these specified curves for interpolation. One
of the primary applications is re-timing specific objects (See
the supplementary video).

G. Multi-frame qualitative comparison

As shown in Fig.[T2] we present a qualitative comparison of
different variants of each VFI model under multi-frame setup.
[D, M]. denotes the model that incorporate both the indexing
map with multi-frame refiner and continuous indexing map
estimator. As anticipated, the [D, M]. configuration consis-
tently yields the highest visual quality across all base models,
demonstrating the effectiveness of both the multi-frame refiner
and the continuous indexing map estimator.

H. Multi-frame quantitative comparison

In Table [[X] we present a quantitative performance com-
parison across various model variants. The configurations [T,
[D],, and [D] retain the same definitions as previously de-
scribed. [D]. denotes the model augmented with a continuous
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TABLE VI
TEMPORAL CONSISTENCY EVALUATION ON VIMEO90K SEPTUPLET USING FVD [[66]] AND VBENCH [67].

\ RIFE |  IFRNet |  AMTS | EMA-VFI \

| (1] (Dl | (7] (Dl | (7] (Dl | (7] (Dle |
FVD | 00174  0.0137 | 00142  0.0137 | 00167  0.0137 | 00119  0.0108
Subject Consistency 1 0957  0.959 0958  0.961 0.958 0.960 0962 0.967
Background Consistency 1 0.952 0.955 0.952 0.956 0.953 0.955 0.955 0.958
Imaging Quality 1 0448 0475 0460  0.481 0462  0.485 0.468 0.486
Motion Smoothness 1 099  0.99% 0996  0.99 099  0.99% 099  0.99

INPUTS

Fig. 10. Comparison on Vimeo90K Septuplet with VFI-Transformer [17].

Masks of I Distance curves
M 075
f 0.50
0.25
0.00

1.00
0.75
0.50
025
0.00

Fig. 11. Manipulated interpolation of anything. Leveraging Segment-Anything [11], users can tailor distance curves for selected masks. Distinct masks
combined with varying distance curves generate unique distance map sequences, leading to diverse interpolation outcomes.

TABLE VII TABLE VIII
COMPARISON ON VIMEO90K SEPTUPLET WITH LDMVFI [33]]. COMPARISON ON VIMEO90K SEPTUPLET WITH VFI-TRANSFORMER [[17]].
| (7] (D] [Dlu | (7] (D] [Dlu
PSNRT 26.83 27.12 25.94 PSNRT 36.09 36.46 3543
SSIM* 0.904 0.906 0.893 SSIM T 0.974 0.976 0.964
LPIPS| 0.098 0.086 0.090 LPIPS| 0.084 0.079 0.081
NIQE|] 6.652 6.481 6.451 NIQE|} 6.251 6.082 6.197

indexing map estimator, [D, M| includes the proposed multi- indexing map. On pixel-level metrics such as PSNR and SSIM,
frame fusion with the refiner model, and [D, M]. incorporates the enhanced variant [D, M]. consistently outperforms the
both the refiner and the map estimator. [T, M| denotes multi- base model [T] as well as [D],,, which lacks a map estimator
frame fusion using the refiner model trained with the time and relies on uniform indexing maps. The improvement from
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Fig. 12. Qualitative comparison under multi-frame setting. [T]: original arbitrary time VFI models using time indexing. [D],,: models trained using distance
indexing, then inference using uniform maps. [D, R],,: models trained using both distance indexing and iterative reference-based estimation, then inference
using uniform maps. [D, M].: models trained using distance indexing with multi-frame fusion, then inference using estimated maps. Due to space limitations,
the two adjacent input frames are omitted in the visualization, while the actual input consists of four frames.
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[D], to [D,M]. highlights the effectiveness of integrating
the continuous indexing map estimator. Meanwhile, perfor-
mance gains from [D] to [D, M], and from [D], to [D, M].,
demonstrate the additional benefit provided by the multi-
frame refiner. Moreover, the comparison between time-indexed
([T, M]) and distance-indexed ([D, M]., [D, M]) multi-frame
video frame interpolation models again shows that our pro-
posed distance indexing yields better interpolation results.

TABLE IX
MULTI-FRAME COMPARISON ON VIMEO90K SEPTUPLET DATASET. [M]
DENOTES THE MULTI-FRAME FUSION. [-]c DENOTES INFERENCE WITH
ESTIMATED INDEXING MAP. OTHER NOTATIONS HAVE THE SAME
MEANING AS IN THE PREVIOUS EXPERIMENTS.

RIFE [7] | [T] [T,M] [D]u [Dl]e [D,M]c| [D] [D,M]|
PSNR 28.22 28.84 27.55 28.25 2834 |2920 31.63
SSIM 1 0912 0922 0902 0.923 0.928 [0.929 0.952
LPIPS | 0.105 0.097 0.092 0.099 0.089 [0.092 0.062
NIQE |} 6.663 6.518 6.344 6.554 6173 |6.475 5.990
IFRNet [25] | [7] [T, M] [D]u [Dle [D,M]c| [D] [D,M]|
PSNR 2826 2875 27.40 27.63 2828 |[29.25 32.11
SSIM 1 0915 0918 0902 0.907 0.919 [0.931 0.958
LPIPS | 0.088 0.085 0.083 0.087 0.083 [0.080 0.074
NIQE | 6.422 6388 6.196 6.414 6249 |6.342 5.957
AMT-S (18] | [T] [T,M] [D]u [Dle [D,M]c| [D] [D,M]|
PSNR 28.52 2891 27.33 27.60 28.80 |29.61 31.80
SSIM + 0.920 0.924 0902 0.908 0.922 [0.937 0.955
LPIPS | 0.101 0.094 0.090 0.098 0.084 [0.086 0.072
NIQE |} 6.866 6.598 6.382 6452 6.223 |6.656 6.056
EMA-VFI (17] | [T] [T,M] [D]u [Dle [D,M]c| [D] [D,M]]
PSNR 1 29.41 29.80 2824 28.67 29.45 (3029 31.31
SSIM 1 0.928 0930 0912 0919 0932 [0.942 0.951
LPIPS | 0.086 0.086 0.079 0.082 0.084 [0.078 0.069
NIQE | 6.736 6597 6.457 6.609 6313 |6.545 6.146
TABLE X
MULTI-FRAME ABLATION STUDY
FE VFI

Lo Lviyy; Lpiviy Lvp Ly,

PSNR t 26.10 27.22 27.34 30.89  31.63

SSIM 1 0.891  0.898 0.901 0.938  0.952

LPIPS | 0.111 0.104 0.097  0.069 0.062

NIQE | 6.627 6575 6.509 6.087  5.990

1. Multi-frame tuning strategy

In this section, we evaluate different training strategies
for multi-frame fusion using RIFE [7] as the baseline for
ablation studies. All experiments follow the same setting
of previous experiments on Vimeo90k. We find that jointly
tuning both refiner and map estimator leads to instability and
failure to converge. Thus, we split the tuning process in two
stages. In the first stage, we first finetune the multi-frame
refiner 7 alone using original VFI loss. In the second stage,
there are two possible choices. Since jointly tuning with the
map estimator remains unstable, we either finetune the flow
estimator only to adapt it to VFI (referred to as FE), or finetune

the VFI modules F and F’ to adapt them to the pretrained
flow estimator (referred to as FE), as shown in Table
The loss term Lp is calculated by Lp = ||D; — DRAFT|3,
denoting the L2 loss between the indexing maps from CPFlow
and RAFT. The setting Ly, corresponds to training only the
VFI refiner with its original loss, while Ly, . involves jointly
training both the base VFI model and the refiner with their
original loss. Among the tested strategies, jointly tuning both
the VFI model and the refiner under Ly, , achieves the best
performance. This improvement is attributed to the model’s
ability to adapt both components to the updated indexing map
derived from the newly predicted optical flow.

TABLE XI
COSTS COMPARISON INCLUDING RUNTIME AND NUMBER OF
PARAMETERS. WE EVALUATE THE COMPUTATIONAL OVERHEAD ON AN
NVIDIA A100 GPU USING IMAGES WITH A RESOLUTION OF 448x256.

[D] [DzM} [D7M}€

Sec. MB Sec. MB Sec. MB
RIFE [7] 0.03 10.21 0.06 2046 0.10 30.68
IFRNet [25] 0.14 473 0.17 1491 0.21 25.13
AMT-S [18] 0.20 286 022 1501 0.26 25.23
EMA-VFI [17] 235 62.62 238 74.84 242 85.04

J. Computational costs of the proposed framework

a) Distance indexing: Transitioning from time indexing
([T]) to distance indexing ([D]) does not introduce extra com-
putational costs during the inference phase, yet significantly
enhancing image quality. In the training phase, the primary
requirement is a one-time offline computation of distance maps
for image triplets.

b) Iterative reference-based estimation: Given that the
computational overhead of merely expanding the input chan-
nel, while keeping the rest of the structure unchanged, is
negligible, the computational burden during the training phase
remains equivalent to that of the [D] model. Regarding in-
ference, the total consumption is equal to the number of
iterations x the consumption of the [D] model. We would like
to highlight that this iterative strategy is optional: Users can
adopt this strategy at will when optimal interpolation results
are demanded and the computational budget allows.

c) Continuous indexing map estimation: The runtime
and the number of parameters are reported in Table
The estimation process introduces an additional latency of
approximately 0.04 seconds per inference, which is relatively
low. The number of parameters for the map estimator is 10.2M.
Overall, the computational overheads introduced by indexing
map estimation are acceptable in practical scenarios.

d) Multi-frame refiner: We also evaluate the compu-
tational overhead introduced by the multi-frame refiner as
reported in Table The refiner adds approximately 0.03
seconds per inference and requires an additional 10.3 million
parameters, which is practical for deployment.

K. Limitations

While the proposed distance indexing strategy effectively
stabilizes motion interpolation under large temporal gaps,
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it does not explicitly address content ambiguity caused by
occlusion or severe lighting variations, where visual infor-
mation is partially missing or altered. The proposed distance
indexing relies on distance maps estimated from optical flow.
In scenarios involving severe occlusion, curved motion, or
significant lighting variations, inaccuracies in optical flow
estimation may lead to imperfect distance maps, which can
negatively affect the learning process. While our experiments
show that distance indexing remains robust to moderate es-
timation errors, its performance may be limited when such
errors become dominant. Nevertheless, we believe that future
advances in optical flow estimation will further enhance the
effectiveness of distance-indexed video frame interpolation.

VII. CONCLUSION

We challenge the traditional time indexing paradigm and ad-
dress its inherent uncertainties related to velocity distribution.
Through the introduction of distance indexing and iterative
reference-based estimation strategies, we offer a transforma-
tive paradigm to VFIL. Our innovative plug-and-play strategies
not only improves the performance in video interpolation but
also empowers users with granular control over interpolation
patterns across varied objects. We also propose a continuous
distance map estimator to accurately predict distance maps
when using multi-frame inputs. Additionally, a multi-frame
refiner is integrated into the interpolation pipeline for further
enhancement. While the proposed framework significantly
improves both pixelwise and perceptual metrics, it still faces
challenges in learning and representing diverse interpolation
trajectories. Extreme large motions may require generative
priors from models like diffusion models. The insights gleaned
from our strategies have potential applications across a range
of tasks that employ time indexing, such as space-time super-
resolution, future predictions, blur interpolation and more.
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