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1. Derivation of Minimum Eye-Safety Distance
Here we give a detailed discussion on Eq. 9 in the main

paper. We expand MPE based on definitions from ANSI
Z136:

MPE(t1)
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0.75
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−0.25
1 , (1)

where ke is a method-independent constant. According to
ANSI Z136, this analytic expression for MPE we use holds
for a wide range of wavelengths from visible light to NIR
light (including commonly used 630nm, 800nm, 938nm,
and 1064nm), as long as the temporal duration is longer
than 18µs. When SWIR laser such as 1550nm is used,
eye-safety is not a concern, and our system’s SNR gain still
holds. When the temporal duration is shorter than 18µs,
which could happen for point scanning (e.g., 10µs for each
point for a 10fps 10k-point system), we still use this expan-
sion as an approximation for ease of derivation; it is easy to
verify that the conclusion still holds with the exact formula.
Rearranging Eq. 1,
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and we have

lmin = kl · P 0.5R0.5
a R−0.125

t1 , (3)

where kl is a method-independent constant.

2. Comparison with Other Sensor Designs
2.1. More Design Variations

In addition to the depth sensor designs mentioned in the
main paper, in this section we discuss a few more existing
or contrived design variations. A comparison between all
design variations is given in Fig. 1.

*Work done during internship at Snap Research.
†Co-corresponding authors

Naive adaptive scanning. One naive way to implement
adaptive sensing is to use a laser and 2D MEMS mirror to
scan the ROI and use a 2D camera to capture the scene. We
denote this method as adaptive V0. Although this method
can scan the same maximum distance as proposed adaptive
V1, the eye-safety distance is much longer.

Adaptive point scanning. An alternative way to implement
adaptive sensing is to use a point scanner but scan the points
in the ROI only. This can be achieved by a synchronized,
co-located laser and single-pixel sensor to get N measure-
ments for each depth map. This adaptive V2 method con-
sumes less power but has a longer eye-safety distance. An-
other limitation is that the sensor itself cannot determine
the ROI and needs an auxiliary camera running in parallel.
Nevertheless, this is a competitive method and we expect it
to be investigated further in future work.

Integration lens. Instead of a 2D camera, it is also possi-
ble to use a single-pixel sensor with an integration lens to
sense the entire scene. This has been implemented in [5],
which we call point scanning V3. From the analysis, it has
exactly the same performance as point scanning V2. Sim-
ilarly, adaptive V3 replaces the synchronized single-pixel
sensor in adaptive V2 with a sensor with integration lens.
Comparing to V2, this increases power consumption and is
therefore not practical.

2.2. Advantage of Adaptive Sensing

To intuitively demonstrate the advantage of proposed
adaptive sensing V1, we compare it with full-frame and
line-scanning methods by assuming N ∼ 100 to 1000,
which is consistent with the spatial resolution of most con-
current 3D sensors. For high-resolution depth sensors with
N > 1000, the gain is even greater.

Compare with full-frame projection (baseline):
• At identical maximum range, eye-safety distance is the

same as our approach, and our sensor’s power is N−1

(0.01 to 0.002) of the baseline.
Compare with line-scanning (SOTA):
• At identical power consumption, our proposed method

can sense N0.25 (3.16 to 4.73) longer distance than the
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Variations 𝑹𝒂/𝑹𝒕𝟏/𝑹𝒕𝟐

Ambient Light Dominates
Read Noise 
Dominates

Evaluation

SNR Power 𝑷
Eye-Safety 

Distance 𝒍𝒎𝒊𝒏

SNR (readout 
noise only)

Point
scanning

V1: point laser +  
single pixel cam; 𝑁2

readouts
𝑁2/𝑁2/𝑁2 𝒄𝑵 𝒌𝒑𝒅𝒎𝒂𝒙

𝟐 𝑵−𝟏 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁
0.25 𝑒

❌ Low power, 
but not eye-safe

V2: point laser + 2D 
cam; 1 image

𝑁2/𝑁2/1 𝑐 𝑘𝑝𝑑𝑚𝑎𝑥
2 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁

0.75 𝑒
❌Worse 𝑃 and 
𝑙𝑚𝑖𝑛 than V1

V3: point laser + 
single pixel w/ 

integration lens; 𝑁2

readouts

𝑁2/𝑁2/1(effective) 𝑐 𝑘𝑝𝑑𝑚𝑎𝑥
2 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁

0.75 𝑒
❌ Same problem 

as V2

Line 
scanning

V1: Episcan3d; 
𝑁 readouts

𝑁/𝑁/𝑁 𝑐𝑁0.5 𝑘𝑝𝑑𝑚𝑎𝑥
2 𝑁−0.5 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁

0.125 𝑒 SOTA

V2: line laser + 2D 
cam; 1 image

𝑁/𝑁/1 𝑐 𝑘𝑝𝑑𝑚𝑎𝑥
2 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁

0.375 𝑒
❌Worse 𝑃 and 
𝑙𝑚𝑖𝑛 than V1

Full
pattern

Kinect, RealSense 1/1/1 𝑐 𝑘𝑝𝑑𝑚𝑎𝑥
2 𝒌𝒍𝒅𝒅𝒎𝒂𝒙 𝑒 Baseline

Adaptive

V0: point laser + 2D 
cam; 1 image

𝑁2/𝑁/1 𝒄𝑵 𝒌𝒑𝒅𝒎𝒂𝒙
𝟐 𝑵−𝟏 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁

0.375 𝒆𝑵
❌Much longer 
𝑙𝑚𝑖𝑛 than V1

V1: phase SLM or 
MEMS DOE + 2D 

cam; 1 image
𝑁/1/1 𝒄𝑵 𝒌𝒑𝒅𝒎𝒂𝒙

𝟐 𝑵−𝟏 𝒌𝒍𝒅𝒅𝒎𝒂𝒙 𝒆𝑵 ✔

V1-a: K ROIs; 1 image
(Usually, 2 < K < 5)

𝑁/𝐾/1 𝑐𝑁𝐾−1 𝑘𝑝𝑑𝑚𝑎𝑥
2 𝑁−1𝐾 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝐾

0.375 𝑒𝑁𝐾−1
✔ Slightly higher 
𝑃 and longer 𝑙𝑚𝑖𝑛

than V1

V1-b: K ROIs; K
images

(Usually, 2 < K < 5)
𝑁/𝐾/𝐾 𝑐𝑁𝐾−0.5 𝑘𝑝𝑑𝑚𝑎𝑥

2 𝑁−1𝐾0.5 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝐾
0.125 𝑒𝑁𝐾−1 ✔ But needs 𝐾 ×

fps camera

V2: point laser + 
receiver; 𝑁 readouts

𝑁2/𝑁/𝑁 𝒄𝑵𝟏.𝟓 𝒌𝒑𝒅𝒎𝒂𝒙
𝟐 𝑵−𝟏.𝟓 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁

0.125 𝒆𝑵

✔ Lower P but 
higher 𝑙𝑚𝑖𝑛 than 

V1. Needs
auxiliary camera

V3: point laser + 
single pixel w/ 

integration lens; 𝑁
readouts

𝑁2/𝑁/𝑁−1(effective) 𝑐𝑁0.5 𝑘𝑝𝑑𝑚𝑎𝑥
2 𝑁−0.5 𝑘𝑙𝑑𝑑𝑚𝑎𝑥𝑁

0.625 𝒆𝑵
❌Worse 𝑃 and 
𝑙𝑚𝑖𝑛 than V1_3

Assume 𝑁𝑝 = 𝑁2, 𝑁𝑙 = 𝑁,𝑁𝑝𝑝 = 𝑁, N = 100, 500

𝑁−0.5 𝑁−0.25 𝑁−0.125 𝑁0.125 𝑁0.25 𝑁0.375 𝑁0.5

𝑁 = 100 0.1 0.32 0.56 1.78 3.16 5.62 10

𝑁 = 500 0.04 0.21 0.46 2.17 4.73 10.28 22.36

𝑁 = 1000 0.03 0.18 0.42 2.37 5.62 13.34 31.62

Examples of 𝑁𝑎

𝐾−0.375 𝐾−0.125 𝐾0.25 𝐾0.375 𝐾0.75

𝐾 = 1 1 1 1 1 1

𝐾 = 2 0.77 0.92 1.19 1.3 1.68

𝐾 = 3 0.66 0.87 1.32 1.51 2.28

𝐾 = 4 0.59 0.84 1.41 1.68 2.83

𝐾 = 5 0.55 0.82 1.50 1.83 3.34

𝐾 = 10 0.42 0.75 1.78 2.37 5.62

Examples of 𝐾𝑎

Figure 1. Comparison between different design variations. Here we summarize all the design variations we have explored. Typically,
N = 100 ∼ 1000. Readers are referred to Tab. 1 and Tab. 2 for typical values of Nα and Kα. Our method (including the variations, V1,
V1-a, V1-b) outperforms the traditional full-frame pattern and SOTA line scanning method.

N−0.5 N−0.25 N−0.125 N0.125 N0.25 N0.375 N0.5

N = 100 0.1 0.32 0.56 1.78 3.16 5.62 10
N = 500 0.04 0.21 0.46 2.17 4.73 10.28 22.36
N = 1000 0.03 0.18 0.42 2.37 5.62 13.34 31.62

Table 1. Examples of Na.

SOTA line-scanning method, with eye-safety distance
increased by N0.125 (1.78 to 2.17).

• At identical eye-safety distance, our method consumes
power at N−0.25 (0.32 to 0.21) of SOTA, and our pro-



K−0.375 K−0.125 K0.25 K0.375 K0.75

K = 1 1 1 1 1 1
K = 2 0.77 0.92 1.19 1.3 1.68
K = 3 0.66 0.87 1.32 1.51 2.28
K = 4 0.59 0.84 1.41 1.68 2.83
K = 5 0.55 0.82 1.50 1.83 3.34
K = 10 0.42 0.75 1.78 2.37 5.62

Table 2. Examples of Ka.

posed method can sense N0.125 (1.78 to 2.17) longer
distance than SOTA.

• At identical maximum range, our power consumption
is N−0.5 (0.1 to 0.04) of SOTA, and our eye-safety
distance is N−0.125 (0.56 to 0.46) of SOTA.

2.3. Read-Noise Dominated Cases

Although our analysis so far focuses on the case where
the noise is dominated by photon noise from the ambient
light, we also analyze the SNR for different designs when
the noise is dominated by the sensor read noise. Fig. 1
shows that in this case, all different variations of the pro-
posed adaptive scheme perform similarly, and still outper-
forms existing point scanning, line scanning or full pattern
designs. It is important to note that the images are domi-
nated by read noise only when the scene is extremely dark
and the laser power per area is extremely low, i.e. near the
maximum sensing distance. In practice, the noise is likely
to be a mixture of ambient photon noise, laser photon noise
and read noise. If the specific range of ambient light, laser
power budget and sensor read noise is known, it is possible
to use Eq. 1 in the main paper directly compute the SNR at
different depths for comparison.

3. Implementation Details
3.1. Hardware Prototypes

We use two FLIR BFS-U3-16S2C-CS cameras equipped
with 20mm lenses as a stereo pair. Our SLM implementa-
tion uses a Holoeye GAEA LCoS (phase-only) SLM, which
can display 4K phase maps at 30 frames per second. Our
MEMS + DOE implementation uses a 0.8mm diameter
bonded Mirrorcle MEMS Mirror. Since we did not find an
off-the-shelf random dot DOE with a small FOV, we use a
Holoeye DE-R 339 DOE that produces a periodic 6×6 dot
pattern with 5◦ FOV. We tilt the DOE such that the pattern
is still unique locally on the epipolar line.

Both projectors, lasers, and cameras are synchronized
with a Teensy 4.0 microcontroller. The MEMS in our
MEMS DOE prototype is controlled with a Mirrorcle Pi-
coAmp 5.4 X200 digital analog converter. We use a Thor-
labs L638P200 laser for the SLM implementation, and a

Thorlabs HL6385DG laser for the MEMS + DOE imple-
mentation. We can drive the lasers from 40mW to 200mW.

For both hardware prototypes we collimate the lasers
with a 40mm lens (Thorlabs AC254-040-A-ML). For the
SLM, our laser diode is linearly polarized and we rotate it
to match the requirements of the SLM incident light. After
reflecting off the SLM we magnify the pattern FOV with a
75mm convex lens followed by a 100mm convex lens. Af-
ter magnification our FOV is 35 degrees, but could easily be
increased with a different optical design.

Pipeline. Following shows our system’s pipeline:
• The Teensy triggers the cameras and the captured im-

ages are sent to the NVIDIA Jetson Nano for process-
ing.

• The attention map is computed which determines
where to project light.

• For our SLM implementation, a hologram is generated
based on the attention map on the Jetson Nano. For
our MEMS DOE prototype, digital voltage values are
sent to the DAC based on the attention map so that the
MEMS points the DOE pattern at the ROI.

This pipeline continues over the video sequence.

3.2. Calibration

We calibrate the intrinsics and extrinsics for each cam-
era in the stereo pair. In our prototype, we place the SLM
very close to the left camera in the pair such that the pixel
correspondences between the SLM and left camera can be
approximated via homography. It is possible to co-locate
the camera and SLM with a beamsplitter to make the corre-
spondences perfectly independent of depth.

We compute a homography between the SLM and clos-
est camera by first generating a grid pattern hologram and
projecting it to a plane. We then detect the grid points in the
closest camera after undistorting and rectifying. Since we
know the correspondence between the scene point and the
slope of our mirror hologram generator, we can compute a
homography to map between them. This enables selectively
illuminating camera pixels by warping from camera space
to SLM space based on the estimated homography.

Our projector lenses induce 3-5 pixel pincushion distor-
tion at the far regions of the projector FOV to varying de-
grees in both the left and right stereo cameras, among other
minor distortions. However, since we have both a homog-
raphy and the ability to generate freeform projector patterns
with the SLM, we simply compensate for this distortion by
warping ideal patterns (such as straight lines for line scan-
ning) from the rectified camera space to SLM space. For
example, when emulating line scanning, this results in lines
being straight in the camera and curved on the SLM, which
makes stitching each line image together highly accurate. It
is critical to warp from the undistorted and rectified camera
space so that the generated patterns are on the same line of



each camera so that we can stitch parallel lines from the left
and right camera for stereo matching. This increases the
number of possible lines we can use and improves energy
efficiency gains since N from Fig. 1 increases. This precise
calibration functionality is not possible in conventional line
scanning systems like [4] since the projector line shape is
fixed.

3.3. Stereo Depth Estimation

We choose semi global matching [3] as our depth algo-
rithm for our experiments instead of recent, learning-based
methods to clearly demonstrate the benefit of our theory.
This is because it is well understood that block matching
fails on textureless regions, while learning-based methods
generate plausible but inaccurate depths on those regions.
Based on recent work that shows active stereo improving
learning based depth estimation [1, 2, 6], we believe it is
likely our theory translates to learning-based depth estima-
tion as well.

3.4. Real Time Demonstration

We provide the code used to simulate and run our phase
SLM at https://github.com/btilmon/holoCu. The code en-
ables simulating various 3D sensors and generating desired
phase maps for a real SLM in real time through a fused
CUDA kernel of Fresnel Holography. We achieve 30 frames
per second using a 1080p hologram size with 100 dots,
which enables the SLM to react to the environment in real
time. In a loop, we first capture a passive stereo pair with no
projector, then we randomly select pixel coordinates where
depth uncertainty is highest. We then warp these coordi-
nates to SLM space based on the estimated homography and
compute the hologram to be displayed on the SLM. This
process repeats for a video sequence.

4. Global Light Analysis

We summarize two major cases for multi-bounce in
Fig. 2. In the case of scattering medium, both full-frame
projection and line scanning suffers from the one-bounce
path on the epipolar plane, while the proposed adaptive
method has very little energy on the epipolar plane and
therefore stray light mostly comes from paths with at least
two bounces, which are much weaker than one-bounce
paths. In the case of inter-reflection, both line scanning and
adaptive method are robust to multi-bounce since fewer dots
are projected and fewer multi-bounce paths exists. To sum-
marize, the proposed method performs better than line scan-
ning in scattering medium and performs comparably with
line scanning when there is inter-reflection.

Figure 2. Global light analysis.
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