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Figure 1: We introduce a novel approach for a user to estimate the metric scale of the face: simply swing the phone in front of the
face. Our app uses the Dual Camera mode to capture selfies and scene images with the front and rear cameras simultaneously. The
proposed algorithm leverages the scene images to resolve the scale ambiguity and then calculates the absolute scale of the face’s
geometry. Our method is easy to use and as accurate as TrueDepth-based methods, which enables a wide range of applications for
smartphones without TrueDepth sensors, as shown in sub-figures 1-4.

ABSTRACT

Many mobile AR apps that use the front-facing camera can benefit
significantly from knowing the metric scale of the user’s face. How-
ever, the true scale of the face is hard to measure because monocular
vision suffers from a fundamental ambiguity in scale. The meth-
ods based on prior knowledge about the scene either have a large
error or are not easily accessible. In this paper, we propose a new
method to measure the face scale by a simple user interaction: the
user only needs to swing the phone to capture two selfies while
using the recently popular Dual Camera mode. This mode allows
simultaneous streaming of the front camera and the rear cameras and
has become a key feature in many social apps. A computer vision
method is applied to first estimate the absolute motion of the phone
from the images captured by two rear cameras, and then calculate
the point cloud of the face by triangulation. We develop a proto-
type mobile app to validate the proposed method. Our user study
shows that the proposed method is favored compared to existing
methods because of its high accuracy and ease of use. Our method
can be built into Dual Camera mode and can enable a wide range
of applications (e.g., virtual try-on for online shopping, true-scale
3D face modeling, gaze tracking, and face anti-spoofing) by intro-
ducing true scale to smartphone-based XR. The code is available at
https://github.com/ruiyu0/Swing-for-True-Scale.

Index Terms: Computing methodologies—Computer vision;
Human-centered computing—Interaction design

1 INTRODUCTION

Knowing the true scale of the user’s face is crucial for many mobile
apps. For example, in AR-based virtual try-on experiences during
online shopping, having knowledge of the actual face scale enables
customers to visually determine the correct size without the need
for manual measurements. Moreover, the scale information aids in
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constructing an accurate 3D face model, essential for rendering real-
scale avatars in Augmented Reality (AR) or Virtual Reality (VR).
Other applications include eye gaze tracking, face anti-spoofing, etc.

However, it is well-known in computer vision that, with a single
front-facing camera, there is an ambiguity to estimate the scale given
the unknown distance between the camera and the face. To obtain the
true scale, extra information or sensors are needed. The methods that
rely on extra prior information are either not accurate (e.g., assuming
known iris size) or not easily accessible (e.g., requiring extra tools
such as a ruler or a bank card). In terms of extra sensors, latest Apple
iPhone are equipped with a TrueDepth sensor that allows for facial
scale estimation. In contrast, the majority of Android phones lack
front-facing depth sensors. Another alternative involves utilizing
inertial measurement units (IMUs) [14, 15, 26] to estimate accurate
motion scale. But this method requires the phone to be in motion for
a long duration to obtain a measurement with adequate precision.

In this work, we propose a simple approach to recover the true
scale of the face utilizing the Dual Camera mode. Dual Camera
Mode has been a popular feature in multimedia social media apps,
e.g., Snapchat [36], Instagram [24], and BeReal [3]. In this mode,
images from both front-facing and rear-facing cameras are recorded
simultaneously and combined together for creative AR effects. The
popularity of Dual Camera mode is enabled by the recent develop-
ment in both mobile hardware and software. On one hand, most
recent smartphones have both front-facing and rear-facing cameras;
on the other hand, system-level support of streaming multiple cam-
eras simultaneously becomes available on both iOS and Android
platforms for the first time.

The user operation of our method is simple: the user only needs to
hold the phone on the left and take a selfie, swing their phone to the
right, and take a second selfie (or swing from right to left depending
on the user’s preference). If the motion of the front camera between
the two selfies is known, triangulation can be utilized to calculate
the true scale of the face. Our key observation is that the front
and rear cameras are rigidly attached together on the phone, which
means that their motion will be the same. Notice that it is much
easier to estimate the motion of the rear cameras because: (1) rear
cameras capture the surrounding world with a larger field-of-view
(FOV), most of which can be assumed static and provides a reference
for motion estimation; (2) many mainstream smartphones have at
least two back-facing cameras (e.g., main camera, ultrawide camera,
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telephoto camera), which can provide the true scale of the motion.
Specifically, we use two rear cameras to reconstruct the true-scale
3D point cloud of the back scene based on stereo computer vision.
We track the true-scale motion of the rear cameras by matching
the 3D point cloud reconstructed before and after the swing. The
estimated motion is then transferred to the front camera and used to
recover the true scale of the face.

We developed a prototype to validate the proposed method. The
prototype includes an app that can simultaneously capture three
(one front-facing and two back-facing) images and an algorithm to
estimate the face scale from two poses by swinging the phone. More
specifically, we applied our method to measure pupillary distance
(PD), which is essential for crafting prescription glasses and can
be integrated into the process of true-scale virtual glasses try-on.
We conduct a user study with 16 participants to evaluate the mea-
surement accuracy and the user experience. The mean error of PD
estimation is only 0.9 mm, showing the feasibility and applicability
of the proposed method.

The main contributions of this paper are as follows:

• We propose a new method for estimating the true scale of
objects (e.g., face) in Dual Camera mode and demonstrate the
potential applications in AR/VR, online shopping, gaze-based
interactions, and biometric authentication.

• We implement a prototype to estimate face scale with a multi-
camera smartphone, and further improve our algorithm’s ro-
bustness to face motion by leveraging face prior.

• We conduct a user study and demonstrate the feasibility and
applicability of the proposed method.

2 RELATED WORK

2.1 Scale Estimation with Smartphone

Scale estimation is a fundamental problem in computer vision. 3D
scenes can be reconstructed from a single image or multiple images
using Structured from Motion (SfM), up to a scale ambiguity. How-
ever, the accurate scale is crucial for AR/VR experiences such as
shopping for glasses with the actual size and immersive interaction
with full-size avatars, as well as 3D printing with the precise size of
the scanned object.

Due to the scale ambiguity, extra references or sensors are re-
quired to recover the scale. A reference object (e.g., a ruler, a credit
card, or the iris of an eye) in the image has a known scale that can
be used to infer the scale of the rest of the image. Recovering the
scale using references typically requires extra items or statistical
information. In terms of extra sensors, stereo cameras, inertial mea-
surement units (IMUs), and depth sensors have been used. Ham et
al. [14] and follow-up works [15, 26] use an IMU to estimate the
phone true-scale motion. It requires a long period of time to get
a sufficiently accurate measurement. For example, [14] needs 68s
to estimate the pupil distance, which limited its use cases. Apple
iPhone X and later models are equipped with a TrueDepth selfie
camera (i.e., FaceID). The face scale can be estimated based on this
depth sensor. But the existence of the TrueDepth camera worsens
the full-screen-displaying experience, and most Android phones do
not have front depth sensors. Our method is proposed upon Dual
Camera mode. The required cameras are already available in most
popular Android and iPhone models.

2.2 Multi-Camera Applications

Over the last decade, we have seen a clear trend of equipping multi-
ple cameras in smartphones, including both iOS and Android sys-
tems. This enables new applications that are not feasible using a
single camera. Based on the orientation of cameras, related work
can be grouped into two categories. The first group merges the
images from two rear cameras. Abdelhamed et al. [1] propose to

Figure 2: Overview of “Swing-for-True-Scale” method

predict scene illumination based on the different spectral sensitivi-
ties of two cameras’ sensors. Lai et al. [20] build a face deblurring
algorithm relying on the different shutter speeds. The second group
demonstrates new features with both front and rear cameras. By
combining photos from the front and rear cameras, Cheng et al. [7]
are able to reconstruct a better environment map, which is helpful for
virtual object rendering. Nam et al. [27] showcase the application in
health. The breathing rate is estimated from the front camera video,
while the heart rate is measured from signals of a fingertip placed in
contact with the rear camera simultaneously.

To the best of our knowledge, we are the first paper utilizing
three cameras (including two rear cameras and one front camera)
to demonstrate an important application in metric scale estimation.
On the one hand, the two rear cameras capture the same back scene,
which enables recovery of the absolute camera pose. On the other
hand, the rear cameras and the front camera have the same motion,
which allows us to know the camera pose of the front camera.

3 SWING-FOR-TRUE-SCALE ALGORITHM

3.1 Overview
This study focuses on how to estimate the true scale of the face in a
smartphone’s selfie mode. Since a single camera suffers from scale
ambiguity [16], additional sensors are needed. One simple method is
to utilize a front-facing depth sensor. However, among all the models
released in 2022 [12], only iPhone 14 series and Huawei Mate P50
Pro are equipped with a front-facing depth sensor. While other
models do not have a front-facing depth camera, most of them are
equipped with at least two rear cameras. Based on this observation,
we propose a simple “Swing-for-True-Scale” algorithm to obtain the
true-scale 3D face using front and back cameras simultaneously.

The user operation is simple: first take a selfie image in Pose 1,
then slightly swing the phone to Pose 2 and take another selfie, as
illustrated in Figure 1. During taking selfies, the two rear cameras are
also capturing images of the back scene simultaneously. The key idea
of the proposed method is to estimate the true-scale phone motion
through the rear dual cameras, as the scale ambiguity can be resolved
by the stereo cue. The real-size 3D face can then be reconstructed
based on the phone’s motion and the two selfies. For better 3D face
reconstruction, the face keeps static during the “swing” operation.
As shown in Figure 2, the method involves three components:

• Offline Camera Calibration. Camera calibration estimates the
intrinsic parameters and distortion coefficients of each camera, the
stereo extrinsics (i.e., rotation and translation) of two rear cameras,
and the front-rear extrinsics between the front and rear cameras.

• Back Camera Pose Estimation. In Pose 1, we reconstruct a real-
scale 3D point cloud of back scene from the captured stereo rear
images. Then in Pose 2, we match keypoints between the images
of Pose 1 and Pose 2 to establish a correspondence between the
keypoints of Pose 2 and the 3D point cloud. Based on this 2D-3D
correspondence, we can estimate the relative pose between Pose 2
and Pose 1 by solving a Perspective-n-Point (PnP) problem.

• Face Scale Estimation. This component first transfers the trans-
formation of back cameras to that of front camera with calibrated
front-rear extrinsics. Then, we detect predefined face landmarks



from the two selfie images to reconstruct true-scale 3D face land-
marks based on the true-scale camera transformation. In the case
of face motion, we also proposed a correction algorithm to rectify
the scale estimation.

3.2 Offline Camera Calibration
The camera on a smartphone can be represented by a pinhole camera
model with lens distortions. We use K to represent the intrinsic
parameters. The extrinsic parameters includes a 3× 3 orthogonal
rotation matrix R ∈ SO(3) and translation t ∈ R3. In practice, the
lens introduces image distortions, which consist of radial distortion
and tangential distortion in Brown–Conrady’s model [9] with five
distortion parameters k = (k1,k2,k3, p1, p2).

There are three cameras utilized in our method: a front camera C f
and two rear cameras Cr1 , Cr2 . For convenience, we regard Cr1 as the
main camera. The parameters that need to be calibrated include the
intrinsic parameters (K f , Kr1 , Kr2 ) and distortion coefficients (k f ,
kr1 , kr2 ) of each camera, the transformation Mr1→r2 between Cr1

and Cr2 (stereo extrinsics), and the transformation Mr1→ f between
Cr1 and C f (front-rear extrinsics). For ease of presentation, we
employ 4 × 4 homogenous transformation matrix representation
M∗ =

[R∗ t∗
0 1

]
, where ∗ denotes any superscripts and/or subscripts.

3.2.1 Single Camera Calibration
We first adopt the classic single-camera calibration method [44] to
obtain the intrinsic parameters and distortion coefficients of each
camera. Specifically, we take a few images of a predefined pattern
(e.g., 9×6 chessboard with a grid size of 35 mm) and detect specific
points on the pattern (e.g., square corners on the chessboard). Given
the real-world coordinates (in meter units) and the corresponding
image coordinates (in pixel units) of these points, we can estimate
the intrinsic camera parameters, distortion coefficients, and extrinsic
parameters of each image by minimizing the reprojection error of
the points using Levenberg-Marquardt optimization algorithm.

3.2.2 Cross-Camera Calibration
We fix the intrinsic parameters and distortion coefficients of the cam-
eras and estimate Mr1→r2 and Mr1→ f using a generic multi-camera
calibration toolbox [30]. Specifically, we place two predefined pat-
terns (e.g., chessboards) in front of and behind the phone and take a
few sets of synchronized images using the three cameras. Since there
is a large overlapping FOV between the two rear cameras, the stereo
calibration of Mr1→r2 is a straightforward extension of single-camera
calibration [5, 44]. The calibration of the transformation Mr1→ f be-
tween the front C f and rear Cr1 cameras with non-overlapping FOV
is based on a classic linear hand-eye calibration strategy [39]. The
estimated Mr1→r2 and Mr1→ f are then jointly refined via bundle
adjustment. Once the calibration is complete, all parameters are
fixed and we can reuse them at later stages.

3.3 Back Camera Pose Estimation
The goal of this component is to estimate the true-scale relative pose
Mt1→t2

r1 of Cr1 swinging from Pose 1 (t1) to Pose 2 (t2) using the
images {It1

r1 , It1
r2 , It2

r1 , It2
r2} captured by the dual rear cameras {Cr1 ,

Cr2} at Pose 1 and Pose 2, as well as the calibration parameters.

3.3.1 Feature Detection and Matching
First, we use the stereo images {It1

r1 , It1
r2} at Pose 1 to reconstruct

a true-scale 3D point cloud of the back scene. To this end, we
need to find some pairs of matched keypoints between the two
images. Specifically, we adopt the SIFT algorithm [22] to detect key-
points on the two images separately. Each keypoint corresponds to a
128-dimensional descriptor. For each keypoint, we adopt FLANN
algorithm [25] to find nearest neighbor keypoints on the other image
with smallest Euclidean distances of the corresponding descrip-
tors. For the initial matches, we apply Lowe’s ratio test [22] to

preserve good matches where the distance ratio between the two
nearest matches of a keypoint is below a threshold (0.7 in our exper-
iments). In this way, we can identify n pairs of matched keypoints
{pt1,r1

i ↔ pt1,r2
i |i = 1,2, . . . ,n} on the stereo images.

3.3.2 Stereo 3D Reconstruction
Taking It1

r1 as an example, the matched keypoints {pt1,r1
i |i =

1,2, . . . ,n} are 2D points in pixel units on the image. To recon-
struct 3D points in physical world, we first convert each keypoint
pt1,r1

i to the normalized coordinate p̃t1,r1
i in meter units by performing

undistortion and reverse perspective transformation using intrinsic
parameters Kr1 and distortion coefficients kr1 . Similarly, the key-
points on the other image It1

r2 can also be converted to normalized
coordinates, resulting in n pairs of matched points in world coor-
dinate {p̃t1,r1

i ↔ p̃t1,r2
i |i = 1,2, . . . ,n}. Then, we can triangulate the

3D point Pi for each correspondence {p̃t1,r1
i ↔ p̃t1,r2

i } using cali-
brated Mr1→r2 . We adopt the direct linear transformation (DLT)
algorithm [16] to triangulate the 3D points, resulting in a point cloud
{Pi|i = 1,2, . . . ,n}. We can further identify the outliers by repro-
jecting the 3D points to the image planes. If the reprojection error
is greater than a threshold (e.g., 8 pixels), we treat it as an outlier.
After removing outliers, the remaining n′ 3D points are the point
cloud {Pi|i = 1,2, . . . ,n′} we reconstructed in Pose 1.

3.3.3 Camera Pose Estimation
In Pose 2, the dual rear cameras also capture a pair of images
{It2

r1 , It2
r2}. As in Pose 1, we extract the SIFT features on It2

r1 and
match them with the keypoints on It1

r1 . We only keep the matches
where the keypoints on It1

r1 are also used to reconstruct the point
cloud {Pi|i = 1,2., . . . ,n′}, resulting in n′′ pairs (n′′ ⩽ n′) of 2D
keypoints matches {pt1,r1

i ↔ pt2,r1
i |i = 1,2, . . . ,n′′}. They are then

converted to normalized coordinates {p̃t1,r1
i ↔ p̃t2,r1

i |i = 1,2, . . . ,n′′}
using Kr1 and kr1 . Since p̃t1,r1

i also corresponds to a 3D point Pi
in the point cloud, we can establish the 2D-3D correspondence
{p̃t2,r1

i ↔ Pi|i = 1,2, . . . ,n′′}. Estimating Mt1→t2
r1 according to this

2D-3D correspondence is a Perspective-n-Point (PnP) problem. It
can be formulated as finding the optimal rotation matrix R̃ and trans-
lation vector t̃ to minimize the summed squared projection errors of
the n′′ points [38]:

min
R,t

n′′

∑
i=1

∥∥∥∥p̃t2,r1
i − RPi + t

1T
z (RPi + t)

∥∥∥∥2
, (1)

where 1z = [0,0,1]T . This minimization problem can be solved
iteratively by Levenberg-Marquardt optimization.

According Eq. (1), the optimization is based on all n′′ points. If
the keypoints are highly unbalanced on the image (e.g., much more
points in a small region than others), the pose estimation would
be biased to feature-dense regions and tend to introduce a large
estimation error. We found in our experiments that feature binning
(a popular trick in visual odometry [31]), which divides the image
into many grids and limits a maximum number of keypoints in each
grid before optimization, could make the pose estimation much more
stable. The final estimated camera pose is Mt1→t2

r1 =
[

R̃ t̃
0 1

]
3.4 Face Scale Estimation
3.4.1 Front Camera Pose Estimation
Based on the estimated relative pose Mt1→t2

r1 of rear camera Cr1 from
Pose 1 to Pose 2 and the calibrated Mr1→ f , we can obtain the relative
pose Mt1→t2

f of front camera C f from Pose 1 to Pose 2. Figure 3
demonstrates the relationships of the camera transformations. We
can derive from it Mt1→t2

f Mr1→ f = Mr1→ f Mt1→t2
r1 . Since Mr1→ f is

an invertible matrix, the relative pose Mt1→t2
f can be computed from:

Mt1→t2
f = Mr1→ f Mt1→t2

r1
(Mr1→ f )

−1. (2)
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Figure 4: Impact analysis of face motion

3.4.2 Face Landmark Detection
Assuming that the two selfie images {It1

f ,It2
f } contain two different

views of the same face, we first detect the 2D face landmarks (in pixel
units) on the two images. In this study, we adopt Google’s MediaPipe
Face Mesh solution [23] to detect m = 468 face landmarks on each
image. The solution employs a lightweight model [19] that can run
in real-time on mobile devices. Each landmark is matched with a
corresponding landmark on the other image, resulting in m pairs of
landmarks {pt1, f

i ↔ pt2, f
i |i = 1,2, . . . ,m}.

3.4.3 3D Face Landmarks Reconstruction
Similar to Section 3.3.2, we first convert the 2D landmarks to nor-
malized coordinates using K f and k f and obtain m pairs of land-
marks in world coordinates {p̃t1, f

i ↔ p̃t2, f
i |i = 1,2, . . . ,m}. Then,

we adopt DLT algorithm [16] to triangulate the 3D face landmarks
{P f

i |i = 1,2, . . . ,m} from 2D landmark pairs using camera transfor-
mation Mt1→t2

f . Based on the 3D landmark reconstruction, we can
obtain not only the real-scale 3D face mesh but also the distance and
angle from the camera to the face. This feature can be employed by
various applications, as exemplified in Figure 1.

3.4.4 Impact Analysis of Face Motion
In 3D face triangulation, there is an underlying assumption that
the face remains still when the person swings the phone. If the
face moves, the reconstructed 3D face mesh will not only be the
wrong size, but may also be deformed. In this section, we will
analyze the impact of face motion on face scale estimation. To
measure the estimation accuracy, we first need to define appropriate
evaluation metrics. In online shopping glasses, pupillary distance
(i.e., the distance between left and right pupils) is crucial for making
prescription glasses. Since PD also reflects the accuracy of face scale
estimation, we will use it as the evaluation metric in the experiments.

To simplify the analysis, we assume that the smartphone and the
face only move along the X-axis direction. As shown in Figure 4,

(a) Face rotation directions

(b) Face motion correction

Figure 5: Face rotations and correction. (a) Pitch, roll, and yaw
movements of a human head. To rectify scale estimation, we assume
the head motion is limited to yaw rotation during the swing. (b) If there
is a yaw rotation, the reconstructed 3D landmarks would be greatly
deformed. The proposed correction algorithm estimates the rotation
to rectify the reconstructed 3D face according to a face prior.

the pupils are marked with blue dots when the camera is in Pose 1.
After the camera is moved for a distance b to Pose 2, the positions of
the pupils are marked with red dots. If there is no face motion (Fig-
ure 4(a)), the pupils estimated from triangulation are true positions
without errors. If the face moves in the same direction as the phone
for a distance of a (Figure 4(b)), the pupils estimated from triangu-
lation are marked with green dots. By using properties of similar
triangles, we can derive the PD estimation is a

b−a ×100% larger than
the true value. Similarly, if the face moves in the opposite direction
to the phone for a distance of a (Figure 4(c)), the PD estimation is

a
b+a ×100% smaller than the true value. For example, if a person’s
PD is 65 mm, and the smartphone moves for 100 mm. If the face
moves 10 mm in the same direction, the error of PD estimation is
+ 10

100−10 ×65 ≈+7.22 mm. If the face move 10 mm in the opposite
direction, the error of is − 10

100+10 ×65 ≈−5.91 mm. It can be seen
that face motion has a non-negligible impact on PD estimation.

3.4.5 Algorithmic Correction for Face Motion

The user’s head can undergo arbitrary 3D translation or rotation
during the swing. There are three directions of human head rotation:
pitch, roll, and yaw, as shown in Figure 5(a). We notice in the study
that most of the head motion is negligible except the yaw. Therefore,
we design a simple correction algorithm that models the unwanted
head motion as a one degree-of-freedom yaw motion.

Our correction method is based on the observation that if the head
rotates in the yaw direction during hand swing, the 3D face mesh
reconstructed from the 2D landmarks of the two images {It1

f ,It2
f } will

be severely deformed. Specifically, the 3D face will become very flat
or sharp in the Z direction, which is different from the normal face
geometry. Our idea is to rotate the landmarks {pt2, f

i |i = 1,2, . . . ,m}
on It2

f by an angle so that the 3D face mesh reconstructed with

{pt1, f
i |i = 1,2, . . . ,m} is geometrically as close to the normal face as

possible. In terms of implementation, we first define a 3D canonical
face, and then estimate the 3D face landmarks {Pt2, f

i |i = 1,2, . . . ,m}
from single image It2

f and the transformation Mt2, f
3D→2D from 3D to



Figure 6: Multi-camera app for data collection

2D landmarks1. The 3D face landmarks are approximated from
the 3D canonical face and do not reflect the real size of the face.
Then, we can rotate the 3D face landmarks by an angle α in the
yaw direction and project them to It2

f using Mt2, f
3D→2D. The new 2D

landmarks {pt2, f
i (α)|i= 1,2, . . . ,m} on It2

f can be used to triangulate

new 3D face landmarks {P f
i (α)|i = 1,2, . . . ,m} with the landmarks

{pt1, f
i |i = 1,2, . . . ,m} on It1

f . We will obtain different triangulated
3D face candidates by changing the value of α .

Among these 3D face candidates, we choose the one that is clos-
est to the real face geometry as the final result. In particular, scaled
point cloud registration [8] is performed between the triangulated
3D face candidate {P f

i (α)|i = 1,2, . . . ,m} and the 3D face land-
marks {Pt2, f

i |i = 1,2, . . . ,m}. The angle α∗ that produces the small-
est registration error (i.e., root-mean-squared pairwise distance) is
the estimated head rotation. Its corresponding 3D face candidate
{P f

i (α
∗)|i = 1,2, . . . ,m} are the corrected landmarks. Figure 5(b)

shows an example of the reconstructed 3D face landmarks before
and after applying face motion correction.

4 IMPLEMENTATION

4.1 Prototype
We developed an Android app (namely “Multi-camera app”) to
collect data. As shown in Figure 6, Multi-camera app captures three
images simultaneously when clicking the “SAVE” button on the
touchscreen. We use the manual focus (MF) mode to fix the focal
length of the cameras and disable optical stabilization in this app.
We tested the app on Samsung Galaxy S22 and Google Pixel 5 with
Android 12 system for data collection.

As shown in Figure 6, Galaxy S22 has a single front camera and
triple rear cameras (i.e., ultra-wide, normal-wide, and telephoto).
In our experiments, we only employ two of the three rear cameras:
ultra-wide as Cr1 and normal-wide as Cr2 . After calibration, the
baseline of the dual cameras is 14.45 mm. The output resolutions of
the three images from the Multi-camera app are 1920×1440 pixels.

In our prototype system, we implemented the “Swing-for-True-
Scale” algorithm using Python on a laptop and leave the mobile
version as future work. The computer vision modules (including
camera calibration, feature detection, keypoint matching, 3D tri-
angulation, PnP pose estimation) are developed based on OpenCV
library. The matrix operations are realized with NumPy library. The
face landmark detection module is implemented with the MediaPipe
Python package. For PD estimation, we do not directly adopt the
detected pupil but estimate the center of the eye as the pupil position.
In this way, even if the pupils greatly move during the swing, it will
not affect the PD estimation.

We transfer the captured 6 images (3 images in each pose) from
the smartphone to an Apple Macbook Pro 2017 with a 2.8 GHz quad-

1The implementation of this part is inspired by open source https:
//github.com/Rassibassi/mediapipeDemos.

(a) selfie image (b) small size (c) medium size (d) large size

Figure 7: Virtual try-on sunglasses with true scale

(a) selfie image (b) scene image (c) reflection (d) cutout effect

Figure 8: Virtual try-on sunglasses involving back-camera scene

core Intel i7 CPU and 16GB memory and run the Python program.
The estimation can be completed within 1 second on average. It is
worth noting that all of the OpenCV functions and MediaPipe solu-
tion in the current implementation have the corresponding Android
versions, and thus can be ported to smartphones in future work.

4.2 Enhanced Virtual Try-On Effect
When shopping for glasses online, users can choose the color and
style of glasses with AR-based virtual try-on apps. While traditional
virtual try-on apps only utilize a single selfie camera, we show some
examples of enhancing virtual try-on via Dual Camera mode.

4.2.1 True-Scale Effect
Since traditional virtual try-on only uses a single selfie camera,
it does not know the true size of the face. When displaying AR
effects, existing virtual try-on apps usually scale the glasses to fit
the detected face. In contrast, the proposed “Swing-for-True-Scale”
method can estimate the true scale of the face through multi-camera.
Benefiting from it, we can display the real virtual try-on effect of
a spectacle model of known size. As shown in Figure 7, we adopt
the Sunglasses template of Snap AR Lens Studio [35] to simulate
the true-scale virtual try-on effect of different sizes (Small, Medium,
and Large) of sunglasses on the same face. This additional effect can
help people choose sunglasses of the right size to purchase, which
greatly improves online shopping experience.

4.2.2 Real Reflection Effect
A major advantage of multi-camera is that it can simultaneously cap-
ture the front selfie image (e.g., Figure 8(a)) and back scene image
(e.g., Figure 8(b)). Thanks to this feature, during the online virtual
try-on, the back scene can be rendered on the virtual sunglasses to
simulate the real reflection effect, which makes the AR effects more
realistic and engaging. As shown in Figure 8(c), we simulate this
effect using the Sunglasses template of Snap AR Lens Studio.

4.2.3 Other Creative Effects
With multi-camera, it is also possible to combine virtual try-on
with the creative effects in Dual Camera mode. For example, we
can integrate the “cutout” effect in Snapchat into virtual try-on to
replace the background of the selfie with the content of the back
camera, resulting in a special virtual try-on experience. As shown
in Figure 8(d), we simulate this effect using the Segmentation and
Sunglasses templates of Snap AR Lens Studio.

https://github.com/Rassibassi/mediapipeDemos
https://github.com/Rassibassi/mediapipeDemos


Figure 9: Distribution of the participants’ PD (in millimeter) using violin
plot and 1D scatter plot. Each data point is represented by a blue dot,
and the white dot denotes the medium.

5 EVALUATION

5.1 Participants and Apparatus
We recruited 16 voluntary participants (12 males, 4 females). The
participants’ ages ranged from 22 to 38 (mean = 26.7). We used a
digital caliper to obtain the ground truth PD value of each participant
by averaging multiple independent measurements carefully. Figure 9
shows the PD distribution. The shape of the violin plot and the scatter
plot show that the 16 participants are relatively evenly distributed in
the interval of 59.5∼70.2 mm with the median of 65.05 mm.2 The
required images were captured by the participants with a Galaxy
S22 and transferred to an Apple Macbook Pro 2017 for processing.

5.2 Research Method and Procedure
We evaluate the proposed method in terms of feasibility and ap-
plicability. The feasibility is demonstrated by evaluating the scale
estimation accuracy. As previously discussed, we adopt PD as the
evaluation metric. The participants were instructed to measure their
PD using the following methods in the experiments:

• Ruler. The participants follow the PD measurement guide [43] to
use a ruler to measure the PD in front of a mirror.

• Card. The participants place a standard-size card (e.g., credit
card with the size of 85.6mm× 53.98mm) on the forehead as a
reference object. Then, the card edge and pupil positions (in
pixel units) are detected on the selfie images with computer vision
algorithms. Based on the ratio of PD to the card length, the
actual PD can be estimated. In the experiments, the participants
directly use an off-the-shelf PD measurement app3 based on the
standard-size card.

• TrueDepth. The iPhones with TrueDepth sensor can obtain the
depth of the face in 3D space and thus the true scale of the face. Al-
though this study focuses on the vast majority of smartphones that
are not equipped with front depth sensors, we adopt TrueDepth as
a reference for comparing accuracy. The participants measure the
PD using an off-the-shelf app4 based on TrueDepth.

• Iris. This approach is based on the fact that the iris diameter of
human eyes is roughly constant, falling in 11.7±0.5mm across
a wide range of population [4, 33]. With the participants’ selfie
images, we can estimate the PD by detecting the iris and pupil
landmarks in pixels and computing the ratio between PD and iris
diameter. We implemented the iris landmark estimation using
Google’s MediaPipe Iris solution [23].

• Ours (raw). The proposed method without face motion correction
described in Section 3.4.5.

• Ours. The proposed method including face motion correction.

Each participant used all six methods to measure the PD. We
evaluate them in various indoor scenes for different participants.
The first three (i.e., ruler, card, and TrueDepth) are off-the-shelf

2The normal range of adult PD is 54∼74 mm.
3GlassesOn (https://play.google.com/store/apps/details?

id=com.sixoversix.copyglass) with a score of 4.8 out of 5 in 17.5
thousand reviews.

4EyeMeasure (https://apps.apple.com/us/app/eyemeasure/
id1417435049) with a score of 4.8 out of 5 rated by 14.3 thousand users.

Figure 10: Violin plots for comparing PD estimation errors (in mil-
limeter). The methods are sorted by the mean error (red dot) in
descending order. “Ours (raw)” represents our “Swing-for-True-Scale”
method without face motion correction.

solutions for measuring PD, and the participants can see the results
instantly. The other three methods are developed by us and run on a
laptop with Python. The participants were asked to capture images
in two different poses with the Multi-camera app. Then, the images
are transferred to the laptop to compute the estimation results.

On the other hand, the applicability is demonstrated through the
questionnaires completed by the participants after experiencing all
the PD measurement methods. Since the proposed method is mainly
designed for smartphones without front depth sensors, we do not
consider the TrueDepth method in the applicability analysis. The
iris-based method is excluded because it has low accuracy from the
feasibility analysis (see Section 5.3.1). Two other existing methods
(i.e., ruler and card) are compared with our method. In the question-
naire, the participants were first asked to rate the ease of use and the
accessibility to the apparatus of the three methods (ruler, card, ours)
in 5-point Likert scale scores. Then, we asked the participants to
order the three methods based on the question “If the measurement
accuracies are the same, which method will you prefer to use?” and
provide comments on the proposed method. We also asked them to
answer the question “Will you use the multi-camera method to mea-
sure PD?” and explain the reason (note the multi-camera method is
our method). The study lasts about 15 minutes for each participant.

5.3 Results

5.3.1 Feasibility Analysis

We compute the absolute error of the PD estimation of each method,
by comparing it to the ground truth, for every participant, as shown
in Figure 10. The violin plot demonstrates the distribution of the
errors from all participants. The red and white dots represent the
mean and medium values, respectively. Among the six methods, the
iris-based method has the largest error with an average of 4.1 mm.
The errors of the iris-based method mainly come from two aspects:
(1) the iris diameter may deviate from 11.7 mm due to individual
differences; (2) the error from iris landmark detection. The errors of
the ruler measurement are also not small, with an average of 3.1 mm.
The participants report that they felt it difficult to align the pupil to
the ruler’s lines in the mirror.

A one-way repeated-measures ANOVA reveals significant dif-
ferences in the absolute error of the six measurement methods
(F5,90 = 13, p < .0001). Post-hoc tests with Bonferroni correc-
tion show that our method (M = 0.88mm, SD = 0.65mm) yields
significantly smaller absolute errors than the iris-based method
(M = 4.07mm, SD = 2.75mm; p < .0001), the ruler measurement
(M = 3.06mm, SD = 1.69mm; p < .0017), and our method without
face motion correction (M = 2.68mm, SD = 1.63mm; p < .016),
which verified the effectiveness of the face motion correction algo-
rithm. Meanwhile, the post-hoc tests indicate the absolute error of
our method (M = 0.88mm, SD= 0.65mm) is at the same level as that
of the TrueDepth method (M = 0.89mm, SD = 0.45mm; p = 1.0)
and the card-based method (M = 0.89mm, SD = 0.59mm; p = 1.0).

https://play.google.com/store/apps/details?id=com.sixoversix.copyglass
https://play.google.com/store/apps/details?id=com.sixoversix.copyglass
https://apps.apple.com/us/app/eyemeasure/id1417435049
https://apps.apple.com/us/app/eyemeasure/id1417435049


Figure 11: Participants’ rating on the ease of use

Figure 12: Participants’ rating on the accessibility to the apparatus

5.3.2 Applicability Analysis

The results from the questionnaire are reported in this section. Fig-
ure 11 summarizes the participants’ rating on the ease of use of the
three methods (ruler, card, ours). About 62% of the participants
rated score 1 or 2 for the ruler-based method, indicating it was dif-
ficult to use. In contrast, there are only 12% of the participants
feeling the other two methods difficult to use (i.e., a score less than
3). Compared with our method, more participants gave score 5 (easy
to use) to the card-based method. Some comments on our method in
the questionnaires indicate the reason, e.g., “keeping head stable is
not easy” and “need detailed instructions”.

Figure 12 demonstrates the participants’ rating on the accessibility
to the apparatus of the three methods. The apparatus in the ruler-
based method consists of a ruler and a mirror. About 68% of the
participants rated score 1 or 2 to this method, implying the ruler
or mirror is inaccessible to them. The apparatus in the card-based
method include a smartphone with front camera and a standard-size
card. Only 6% of the participants gave a score less than 3 (i.e.,
inaccessible) to it, indicating that most of them felt it easy to find
a card (e.g., credit card, student card) around. Our method only
needs a smartphone with multiple cameras, which can be satisfied
by almost all the latest models. The participants also agreed with
this fact that about 93% of them rated a score more than 3 (i.e.,
accessible) to our method.

The participants’ preference for the three methods is summarized
in Figure 13. The ruler-based method is the least liked, which is in
line with the results of the participants’ ratings on the ease of use
(Figure 11) and the accessibility to the apparatus (Figure 12). Two
participants ranked the card-based method the least like because “I
do not like the card to attach to my face because it might be dirty”.
It is interesting to see from Figure 13 that half of the participants’
favorite method is the card-based method, while the other half voted
for our method. The result is consistent with that in Figure 11
and Figure 12. The participants’ comments on our method also
explained their preference, e.g., “quick and convenient”, “fewest
items required”, and “comparably easy to use”.

For the responses to the question “Will you use the multi-camera
method to measure PD?”, about 87.5% of the participants would be
willing to use our multi-camera method, while the other 12.5% were
not sure. No one answered “No”. According to the collected reasons,
the participants would use our method because “it is accurate” and
“easy to use anywhere”; the main concern of the two participants
who answered “Not sure” is the head movement issue – they thought
our method is “not easy to keep head static” and “keeping head
static can be a challenge”. But as shown in Figure 10, our algorithm
for face motion correction can effectively alleviate this issue.

Figure 13: Participants’ preference to use the methods

(a) Scenes tested with accurate estimations (b) failure case
Figure 14: Example scenes tested in the experiments

6 LIMITATIONS

6.1 Dependence on Background Scenes
The accurate scale estimation of the proposed method relies on reli-
able camera pose estimation. The pose estimation is based on feature
detection, keypoint matching, and 2D-3D correspondence. Thus, the
effectiveness of our method is affected by the quality of back scenes.
As described in Section 3.3, we adopt some good practices (e.g.,
Lowe’s ratio test for keypoint matching, feature binning for pose
estimation) to make our method robust to various background scenes.
To verify the robustness, we assigned the participants to different
scenes that are common in life. Figure 14(a) shows four examples
of scene images capture by the participants, including printer, tea
bags, desktop, and sofa. Our method achieved accurate estimation
results in these scenes. However, in some challenging scenarios,
our method failed. Figure 14(b) shows a failure case where the
scene is far away from the camera and with few textures. It could
also present difficulties when used in outdoor settings where the
background scene undergoes frequent changes.

6.2 Vulnerability to Large Face Motion
A basic assumption of the proposed method is the face should be as
static as possible when swinging the phone. In practical applications,
it is impossible for the users to keep the head completely still. To
address this issue, we proposed a correction algorithm for rectifying
the head rotation around the yaw axis. The effectiveness of the
algorithm was verified in our user study. As shown in Fig 10, the
mean error of PD estimation was decreased from 4.1 mm to 0.9 mm
with the face motion correction. However, the proposed method will
suffer from large estimation errors if there is a big face motion. In
this case, the motion correction algorithm is unable to predict the
non-negligible face translation.

6.3 Limitations in Implementations
Our prototype system employs an Android app to collect data, which
is then transmitted to a laptop for algorithm calculation. The current
implementation demonstrates the feasibility of robustly estimating
metric face scale from images captured by a smartphone. However,
we have yet to examine the real-time performance of the proposed
algorithm on smartphones. Since the proposed approach is computa-
tionally lightweight, we believe a real-time on-device implementa-
tion is possible with careful development and optimization, which
we leave for future work.

7 DISCUSSIONS

7.1 Interpretation of Results
The human PD has a reasonable range, such as the 45∼82 mm
measuring range of a pupilometer [2], which very few people exceed.



Therefore, any PD estimation beyond this range will be considered
a failure, and the measurement will need to be retested. Only the
data measured within this range will be included in the results of
Section 5.3.1. Combining the factors of scene quality and face
motion, the overall measurement success rate is approximately 80%.

7.2 Out-of-the-Box VIO/SLAM Systems
In this study, we did not choose the out-of-the-box VIO/SLAM
systems (e.g., Apple ARKit, Google ARCore) as baseline for the
following reasons. 1) It is well-known that monocular VIO/SLAM
systems need a specific initialization step to get initial depth esti-
mates to bootstrap pose estimation [29], which can take up to a few
seconds. 2) VIO/SLAM systems focus on real-time estimation of a
continuous camera trajectory, which is not necessary for our purpose
and often trades accuracy for computing efficiency. We propose a
quick, responsive way of getting pose estimates for sparse views. 3)
Evaluating the contributions of sensors (IMU and cameras) in pose
estimation is challenging due to the closed-source nature of ARKit
and ARCore. Our paper focuses on developing an open-source
camera-based solution.

7.3 Privacy Concerns
Compared with normal selfie mode, our method is built upon Dual
Camera mode which may increase the risk of the leakage of private
information. With the front camera on, the users tend to focus on
the content of the selfie and ignore the objects in the back scene.
Sensitive information that appears in the rear camera (e.g., the screen
content on the third image in Figure 14(a)) may be leaked when using
Dual Camera mode. In order to reduce this risk, we can use computer
vision methods [37] to automatically detect private information on
the image and hide them. In comparison, the card-based method
has even greater privacy concerns. Since the standard-size cards
accessible to most users are usually credit cards or debit cards, it
is easy to reveal sensitive information on the card (e.g., names and
numbers) when measuring PD using the front camera.

7.4 Other Applications
True-Scale 3D Face Reconstruction. A straightforward extension
of our work is to reconstruct the 3D face mesh with the metric scale,
which is crucial for applications in AR/VR. Most single-view 3D
face reconstruction [10, 11, 13, 32, 46] relies on learned statistical
prior of the face model. Multi-view-based methods [6, 28] are able
to explore the geometry constraint and show better performance.
However, almost all those methods are not able to reconstruct the
actual face dimensions. In our system, we have selfie images and
their corresponding 6-DOF camera poses. It allows us to recover the
3D point cloud of the face landmarks. Combining with the selfie
images, we can get the 3D face mesh with the scale.
Eye Gaze Tracking. The proposed method can also be used for
eye gaze tracking on mobile devices [17, 41]. For image-based
gaze tracking, it has been demonstrated that an extra depth camera
improves tracking accuracy as they can directly measure head pose
and eye position in 3D [21]. So far, few works have explored
gaze tracking using depth information on mobile devices. The
proposed method can help geometric-based methods [18, 34, 40, 45]
by providing true-scale depth estimates at detected face landmarks,
or by feeding a reconstructed full-depth map as input to appearance-
based methods. This enables accurate gaze tracking on devices even
without a front-facing depth camera, which greatly broadens the
potential application of mobile gaze tracking.
Face Anti-Spoofing. The mobile apps using face authentication
usually require the user to open the front camera and capture a selfie
or record a video duration for anti-spoofing. But these methods could
be easily attacked by impersonation of 2D methods, like using a
printed face or playing a video on a display. We come up with a new
interaction method for anti-spoofing; the app asks the user to keep

their head still and swing their phone while recording a short video
to capture the front, left, and right sides of the face. From the video,
the true-scale 3D face can be reconstructed, which can be compared
to the same person in the database so that 2D face spoofing attacks
can be easily detected. 3D attacking methods [42] like using a paper
mask or resin mask lack the true scale and expose the boundary
between the mask and the skin of the attacker in the left/right side
views. Another 3D attacking method using a mannequin lacks
natural eye and talking movement. Thus, our method could severely
increase the face spoofing’s cost.

8 CONCLUSION

In this work, we propose a novel approach to the true-scale recov-
ery of users’ faces for smartphone apps. The proposed approach
operates in Dual Camera mode, which involves streaming images
with both the front and rear cameras simultaneously. The approach
only requires minimal interaction from the user: the user only needs
to swing the phone in front of their face. We conduct a user study
to evaluate the feasibility and applicability of the approach as com-
pared to several existing methods. According to the questionnaires
collected from the participants, it is also easy to use and accessible.
These merits make the proposed approach a competitive alternative
for face scale estimation on mobile phones, especially considering
that most of smartphone models do not have a front depth camera.

As our first attempt to face scale estimation by swinging the
phone, this work shows promising results of the proposed approach.
Nevertheless, it does have a few limitations including less robustness
to textureless or dynamic scenes, and difficulty in correcting large
face motion, which we believe can be resolved in future work. In
addition to showing how the approach can improve user experiences
in true-size virtual try-on for online shopping, we also give prelim-
inary roadmaps of how the approach can assist a variety of other
applications, including true-scale 3D face reconstruction, eye faze
tracking, and face anti-spoofing. We hope this work will spur further
studies in the Dual Camera mode and we are excited to see more
applications enabled by this Swing-for-True-Scale approach.
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