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Abstract Close-up facial images captured at short distances
often suffer from perspective distortion, resulting in exag-
gerated facial features and unnatural/unattractive appearances.
We propose a simple yet effective method for correcting per-
spective distortions in a single close-up face. We first per-
form GAN inversion using a perspective-distorted input fa-
cial image by jointly optimizing the camera intrinsic/extrinsic
parameters and face latent code. To address the ambiguity
of joint optimization, we develop starting from a short dis-
tance, optimization scheduling, reparametrizations, and ge-
ometric regularization. Re-rendering the portrait at a proper
focal length and camera distance effectively corrects per-
spective distortions and produces more natural-looking re-
sults. Our experiments show that our method compares fa-
vorably against previous approaches qualitatively and quan-
titatively. We showcase numerous examples validating the
applicability of our method on in-the-wild portrait photos.
We will release our code and the evaluation protocol to fa-
cilitate future work.
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1 Introduction

Every day, millions of people enjoy taking selfies with their
smartphones. Although these devices have high-quality cam-
eras that can capture high-resolution and accurate colors,
selfies tend to suffer from perspective distortion. This dis-
tortion is caused by the short distance between the face and
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the camera (usually between 20–60 cm) and is particularly
noticeable (as shown in the first-row of Figure 1). The dis-
tortion makes frontal features, like the nose, appear more
prominent and causes the face to look unnatural and asym-
metrical. Additionally, the distortion often obscures the side
of the face, including the ears. This distortion creates unflat-
tering images and could negatively impact face identifica-
tion and other related tasks.

Existing efforts automatically correct portrait perspec-
tive distortions [6,8,9] often involving reconstruction-based
warping [18] and learning-based warping [60,32]. However,
these methods rely on estimating a 2D flow map to warp the
image, leading to incorrect face shapes after correction, as
shown in Figure 2(a). Moreover, they cannot generate disoc-
cluded pixels, such as ears and hairs, which may be revealed
in the background. Additionally, the warping-based method
cannot render the background with the same camera param-
eters, causing misalignment between the face and body.

Our proposed solution to correct portrait perspective dis-
tortion is 3D GAN inversion, building on the effectiveness
of 3D GANs [33,61,11,34,10,45,16]. This approach opti-
mizes facial latent code, camera pose, and focal length to es-
timate facial geometry and camera-to-face distances. How-
ever, optimizing these parameters from a single distorted
face is challenging, and existing GAN inversion methods
like PTI [40] fail to provide accurate results when applied
to 3D GANs. To address this issue, we propose four de-
signs: (1) closeup camera-to-face distance initialization, (2)
separate optimization of face and camera parameters, (3)
reparameterizations, and (4) landmark and geometric con-
straints. We also incorporate a workflow to handle full im-
ages rather than cropped faces. Our method can correct per-
spective distortion by adjusting the camera-to-face distance
(as shown in the second row of Figure 1) and applying spe-
cial visual effects such as dolly-zoom by adjusting camera
parameters.

https://portrait-disco.github.io/
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Figure 1: Portrait distortion correction. Portrait photos captured from a short distance (e.g., selfie) often suffer from undesired perspective
distortions (the first row). Our approach corrects these perspective distortions and synthesizes visually pleasant views by virtually enlarging the
focal length and moving the camera further away from the subject. Please check the supplementary materials for videos.

We make the following contributions:

– We propose a pipeline for correcting portrait distortion
using perspective-aware 3D GAN inversion. Our pipeline
integrates GAN inversion for the face region and a work-
flow to achieve camera-consistent full-image manipula-
tion, avoiding inharmonious composition between the
face and body. This enables various visual effects, in-
cluding dolly-zoom videos.

– We explore several design choices to avoid the optimiza-
tion falling into sub-optimal solutions, including better
initialization, separate optimization of face and camera
parameters, reparameterizations, and geometric loss.

– We establish a comprehensive evaluation for portrait per-
spective distortion correction, including quantitative, qual-
itative, full-image, and video evaluation, which will ben-
efit future research in this area.

2 Related Work

2.1 Portrait perspective undistortion

Selfie photos taken from close distances often suffer from
perspective distortions, resulting in unappealing distortions
such as an enlarged nose, uneven facial features, asymmetry,
and hidden ears and hairs. These distortions are commonly
referred to as “selfie effects” and are a significant concern
for many people, with some even considering plastic surgery
as a solution [53]. Research indicates that the camera dis-
tance plays a vital role in portrait perception, and studies
have identified an “optimal distance” for capturing undis-
torted facial images [8,13]. Specifically, it has been found

that 50mm lenses are ideal for producing natural-looking
and flattering images. In response, smartphone manufactur-
ers have attempted to encourage users to take selfies from a
greater distance by reducing the field of view [54].

Current perspective distortion methods either model dis-
tortion as a warping function parameter [49] or manipu-
late camera-to-face distance in a reconstructed model [18].
While deep learning-based methods [60] can correct minor
distortions, they struggle with severe distortions due to in-
accurate 3D face-fitting steps and the inability to inpaint oc-
cluded regions like ears using 2D warping flow maps. 3D
radiance field-based methods [20,4,19] provide full control
of camera parameters but require many training images and
do not leverage face priors. Our method uses 3D GAN inver-
sion to correct close-range input images, fill in unobserved
regions, and allow flexible camera-to-face distances, effec-
tively correcting severe distortions.

2.2 3D GANs

The neural 3D representation [35,30,5,21,44,36,29,12,31,
50,31] has shown impressive photorealism in novel view
synthesis and is a foundational representation for 3D-aware
generation. Implicit 3D representations have been leveraged
by recently proposed 3D GANs [16,11,34,61,10,33] to gen-
erate high-resolution outputs with remarkable details and
3D consistency. Our work uses the pre-trained architecture
in EG3D [10] due to its computational efficiency and its
ability to produce photorealistic 3D consistent images, sim-
ilar to those generated by StyleGANs [23,24]. However, our
method is agnostic to the choice of 3D GANs.
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(a) Fried’s [18] (b) Zhao’s [60] (c) PTI [40] (d) Ko’s [26]

Figure 2: Limitations of state-of-the-art portrait perspective correction techniques. (a)(b) [18] and [60] are 2D warping-based methods that
cannot fully recover the correct face geometry or generate missing content, such as ears. Moreover, (b) shows that the corrected image using
[60] exhibits an inharmonious composition of the face and neck, in contrast to our result in Figure 8. (c)(d) are GAN inversion methods that can
manipulate camera parameters. (c) PTI [40] is a 2D GAN inversion method that may produce sub-optimal solutions and incorrect facial geometry
when applied to 3D GANs. (d) is a 3D GAN inversion method that jointly optimizes face and partial camera parameters but cannot generate correct
geometry. Both (c) and (d) can only correct facial regions instead of the full body.

2.3 GAN inversion

GAN inversion is a technique that maps a real image back
into the latent space of a pre-trained GAN, which can ex-
pand the model’s editing capability to real photos. There
are two main categories of GAN inversion: 2D and 3D. 2D
GAN inversion methods optimize the latent code for a single
image [1,14] or use a learned encoder to project images to
the latent space [39,46,3]. Some hybrid strategies combine
both methods to refine the latent code by optimization [22,
62]. Recent 2D GAN inversion methods achieve high editing
capabilities and have been extended for video editing [56,
48,2]. However, editing 3D-related attributes such as camera
parameters and head pose remains inconsistent and prone to
severe flickering, as the pre-trained generator is unaware of
the 3D structure.

On the contrary, 3D GAN inversion methods [26,27,45,
51,57,55] achieve 3D consistent reconstruction and manip-
ulation by incorporating 2D GAN inversion methods, such
as PTI [40], with estimated camera parameters obtained from
3DMM or other algorithms. While some recent methods like
[27] and [51] estimate all camera parameters from 3DMM
and keep them fixed, Ko et al. [26] assume known camera in-
trinsics and camera-to-face distances to jointly optimize the
face latent code and rest of the camera parameters. However,
correcting perspective distortion requires estimating the face
latent code, camera-to-face distance, and focal length, pos-
ing a challenge due to ambiguity among these parameters.
To address this, we propose a perspective-aware 3D GAN
inversion method to estimate the face latent code and cam-
era parameters accurately.

3 Background

We will briefly introduce the basics of StyleGAN and Style-
GAN inversion, followed by 3D GANs.

StyleGAN Given a random sample z ∈R512 drawn from a
normal distribution, StyleGAN [23] can yield a new sam-

ple from the data distribution. It first maps z to an inter-
mediate latent vector w ∈ R512 using a learned mapping
w = Hθ(z). The space of the latent vector w (style code) is
commonly referred to as W . The vector w controls feature
normalization in 18 layers of the generator network Gθ and
produces the final image

I = Gθ(w) = Gθ(Hθ(z)) . (1)

StyleGAN inversion enables the projection of an input real
image, denoted as x, into the pre-trained generator’s domain.
This projection allows us to perform various editing opera-
tions on the input image. Given the exceptional fine-grained
editing ability, inversion is typically carried out in the W
space. To obtain the optimal latent vector ŵ ∈ W , we mini-
mize the LPIPS perceptual loss function [59]:

ŵ = argmin
w

LLPIPS(Gθ(w), x) . (2)

Due to potential disparities between the real image and the
pre-trained generator’s domain, the reconstructed image us-
ing the inverted latent code ŵ might suffer from distortion.
To address this, Roich et al. [40] propose pivotal tuning that
unfreezes and fine-tunes the generator using fixed ŵ. The
primary objective is to optimize the generator’s parameters

ϑ = argmin
θ

LLPIPS(Gθ(w), x) + λL2LL2(Gθ(w), x) . (3)

3D GAN combines the implicit 3D representation and Style-
GAN for 3D controllable image generation. The StyleGAN,
including Hθ and Gθ, uses latent codes and camera param-
eters as input to generate implicit 3D representation. Then,
the neural renderer Rθ takes the implicit representation and
camera parameters to produce the final image. The formula-
tion of this process is given by:

I = Rθ(Gθ(w), c) = Rθ(Gθ(Hθ(z, c)), c), (4)

where c includes the intrinsic and extrinsic parameters.
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Figure 3: Perspective-aware 3D GAN inversion. Step 1: Initialization. We first fit a 3DMM model to the image to get an initial camera pose
and average randomly sampled latent codes to initialize the face latent code. The initialized camera pose can roughly match the face direction and
size, but the estimated focal length and camera-to-subjective distance are inaccurate. Then, we get a closeup camera by pushing the camera-to-face
distance d0 to a small value dint and changing the focal length according to the reparameterization method. Step 2: Optimization. We fix the face
latent code, generator, and neural renderer to optimize the camera parameters. Here, we reparameterize the focal length and rotation to further ease
optimization. After optimizing the camera poses, we simultaneously optimize the face latent code and camera parameters. Finally, we perform
pivotal tuning to fine-tune the generator to achieve high-fidelity results on real images.

4 Perspective-aware 3D GAN Inversion

Correcting the perspective distortion of a single close-up
face portrait requires manipulation of its camera-to-subject
distance. We propose a perspective-aware GAN inversion
technique that utilizes pre-trained 3D GANs to invert the
portrait into its corresponding face latent code and camera
parameters (see Figure 3). Then, we adjust the camera pa-
rameters, such as the camera-to-subject distance and focal
length to re-render a novel portrait with alleviated distortion.

Existing methods [45,27,26,55] extend PTI to 3D GAN
inversion by introducing additional camera parameters. How-
ever, the accuracy of these parameters, especially the focal
length and camera-to-subjective distance, can be uncertain
when estimated using 3DMM or other algorithms. Nonethe-
less, these methods can still produce reasonable results de-
spite the errors because their input images are captured at
far distances, where the weak perspective model can be ap-
proximated, and the input reflects ground truth faces (see
Figure 16). The inaccuracies in focal length and camera-to-
subjective distance merely lead to minor scale discrepancies
in the face geometry.

However, close-up photography is an entirely different
story due to the perspective model, and the distortion that
makes the face appearance differ from the ground-truth face
(Figure 16). Therefore, using these inaccurate parameters di-
rectly could lead to faces with incorrect geometry (see Fig-
ure 18). For high-quality 3D face images, accurate estima-

tion of both camera-to-subject distance and focal length is
essential. Therefore, we jointly optimize the camera param-
eters and the face latent code:

ŵ, ĉ = argmin
w, c

L(Rθ(Gθ(w), c), x) . (5)

Inferring unknown face and camera parameters from a
single image is indeed an ill-posed problem, as there can
be multiple combinations of focal length, camera-to-subject
distance, and face shape that produce the input image (see
Figure 19). Due to this ambiguity, combing naı̈ve camera
optimization with PTI encounters significant challenges (as
shown in Figure 18, 20). To alleviate the ambiguity, we pro-
pose a perspective-aware 3D GAN inversion with four tech-
niques: starting from a short distance, optimization schedul-
ing, reparameterizations, and landmark regularization.

4.1 Initialization

We tried to use a method similar to existing 3D GAN inver-
sions for camera and face initialization. However, the initial-
ized camera parameters are unsuitable for the desired set-
ting, where a close-up camera is required.

Starting from a short distance Since the initialized camera
c0 can generate a face match with the size of the face in the
input image, we refine it to a close-up camera by pushing its
camera-to-face distance d0 to a small value dinit. At the same
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Figure 4: Pipeline of processing full-frame image. Taking a full-frame close-up face image, we crop the closest face from the input image and
perform 3D GAN inversion to infer the face latent code and camera parameters of the cropped face. After inversion, we manipulate the camera
distance and focal length to render virtual images. (a-c) Geometry-aware stitching tuning. (a) We align and blend the rendered face depth map with
the depth estimated from the entire image using a monocular depth estimation algorithm (MiDaS [38]). We project the entire input image to the
same virtual camera positions of the manipulated face image. (b) We fine-tune the generator by minimizing border loss and content loss to refine
the border of the generated long-distance image. (c) Finally, we blend the warped full image with the generated face image.

time, we adjust the focal length to maintain the eye position
using the reparameterization method that will be described
in Equation (8).

4.2 Optimization

Optimization scheduling When camera parameters are in-
correct, the face latent code often overfits the target face,
resulting in wrong geometry. Therefore, we propose opti-
mization scheduling, which sequentially optimizes the cam-
era parameters, face latent code, and generator.

Focal length reparameterization We observe that the focal
length is more sensitive than the camera-to-face distance
in optimization (see Figure 21). Therefore, we propose to
relate the focal length to the camera-to-subject distance to
limit the degree of freedom.

Suppose the world-to-camera transformation is:[
pc

1

]
=

[
R t

0 1

] [
pw

1

]
, (6)

where R = [rx, ry, rz]
T ∈ R3×3 is the rotation matrix and

t = [tx, ty, tz]
T ∈ R3×1 is the translation vector. The in-

trinsic matrix K transforms a point from camera space to
the image plane as:

zc

u

v

1

 = Kpc =

f 0 cx
0 f cy
0 0 1

pc . (7)

When adjusting the translation tz , we relate the focal length
f to tz by ensuring the eye position remains unchanged. The
relation is given by:

f = αf0 , where α = (d0 − (tz0 − tz))/d0 , (8)

d0 represents the initialization of camera-to-eye distance.
The derivation can be found in the Appendix. During op-
timization, we update the intrinsic matrix by

K =

γαf0 0 cx
0 γαf0 cy
0 0 1

 , (9)

where γ is a learnable parameter with a small learning rate
to accommodate error resulting from approximation.

Rotation reparameterization Besides focal length parame-
terization, we also reparametrize the rotation matrix R to
ensure orthogonality and reduce the degree of freedom:

R =

 | | |
rx ry rz
| | |

 = F (Q) = F

 | |
q1 q2

| |

 , (10)

where rx, ry, rz ∈ R3 are rx = N(q1), ry = N(q2 − (rx ·
q2)rx), and rz = rx × ry , and N(·) denotes L2 norm.

4.3 Loss functions

Landmark regularization The photometric loss function used
in GAN inversion is ineffective for representing perspective
changes. Therefore, we use an additional landmark loss to
increase the sensibility of camera-to-subject variation. We
use the dense landmarks estimated from MediaPipe [28] and
calculate their L2 distances. Since there exist many unreli-
able landmarks, such as the occluded regions, we define an
uncertainty-based landmark loss:

Llandmark(m) =

∥M∥∑
i=1

(
log

(
σ2
i

)
+

∥mi −m′
i∥22

2σ2
i

)
, (11)
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where m ∈ M is the normalized 3D coordinates of the land-
marks and ∥M∥ equals 468. σ is a learnable parameter to
control the uncertainty.

Masked loss Close-up portraits often have faces that extend
close to the image boundary, creating issues with the crop
operation and potentially causing the cropped image to have
an incomplete face and black boundaries. As a result, di-
rectly fitting such images may yield unusual facial features.
To address this concern, we implement a masked loss, which
allows us to ignore the out-of-boundary information.

4.4 Perspective-aware manipulation

After 3D GAN inversion, we acquire optimized parameters
to reconstruct the input face and manipulate camera settings
to render virtual images Inovel. To correct face perspective
distortion, we increase the camera-to-subject distance. We
also adjust the focal length simultaneously to maintain a
similar face size as the input according to Equation (8).

5 Extension for Full-frame Image

Since face GANs can only process cropped face regions, to
render a physically plausible full-frame image, we develop
the geometry-aware stitching (Figure 4) to extend the core
distortion correction method to full-frame images.

The basic idea is similar to STIT [48] that fine-tunes the
generator with frozen inverted face latent code by minimiz-
ing the gap between the border pixels of the generated face
and their corresponding pixels in the input image. As a re-
sult, the refined generator renders face images that can be
seamlessly blended with the full image without visible in-
consistencies.

However, applying STIT [48] directly is infeasible. Be-
cause the perspective manipulation step yields a face image
Inovel with different camera parameters from the input full
image Ireal, leading to geometric inconsistencies between
them. Merely fine-tuning the generator and then blending
the generated face image and the input full image can re-
duce seams but introduce suspicious distortion, such as a
disproportionately large face and a slim neck. To overcome
the challenge, our method reprojects the background with
the camera parameters of the generated face, followed by
the stitching tuning and blending steps.

5.1 Reprojection

We can effectively mitigate geometric misalignment issues
by reprojecting the input image using the same camera pa-
rameters as the rendered face (shown in Figure 4a). This re-

projection process relies on point clouds. Initially, we ac-
quire the depth map dfull

near for the input image through a
monocular depth estimator [38]. However, direct utilization
is impossible since the depth map’s scale differs from the
rendered face’s. Maintaining aligned depth maps for the en-
tire image and the rendered face image becomes crucial.

To achieve this, we render the depth map drender
near for the

cropped face using the 3D GAN and align the monocular
depth with it. This alignment is accomplished by minimizing
the least square error:

argmin
s,b

∑
∥
(
s× Crop(dfull

near ⊙ Ψ) + b
)
− drender

near ∥22 , (12)

where s and b are the scale and shift parameters, ⊙ is the
element-wise multiplication, and Ψ masks non-face regions.
But the aligned depth dalign

near = s ⊙ dfull
near + b is still di-

verse from the rendered face depth due to the limitation of
the monocular depth estimator. To refine it, we use the ren-
dered face depth for the face region and use Poisson blend-
ing [37] to propagate the face depth to surrounding regions,
e.g., body, hair. The content condition is based on the ren-
dered face depth, while the gradient follows the monocular
depth. As the propagation proceeds from inner to outer re-
gions, we set an outer boundary dborder

near using the aligned
depth map as the constraint.

Following propagation, we obtain dblend
near , a fine-grained

depth map aligning with the rendered face depth. We then
project the entire image to a longer distance using 3D GANs’
camera parameters and the refined depth map.

5.2 Stitch tuning

Given the reprojected full image Iwarp
real , we follow [48] to

fine-tune the generator’s weights ϑ (as depicted in Figure 4b).
We use a border loss to achieve a closely-matched border
between our refined face image I refine

novel and the warped full
image:

Lborder = ∥I refine
novel ⊙ Ψ̃ − Crop(Iwarp

real )⊙ Ψ̃∥22 , (13)

where Ψ̃ is the border mask. Likewise, we maintain the in-
tegrity of the content in our synthesis via a content loss:

Lcontent = ∥I refine
novel ⊙ Ψ̂ − Inovel ⊙ Ψ̂∥22 , (14)

where Ψ̂ denotes the face inner region mask.

5.3 Blending

Finally, we blend the refined synthetic face image and the
warped full image to produce an entire image virtually cap-
tured at a long distance, as shown in Figure 4c. Note that if
the inverted face loses details, we can alleviate such artifacts
by warping the residual between input and inversion using
the rendered depth map, then add it to the final images.



DisCO: Portrait Distortion Correction with Perspective-Aware 3D GANs 7

6 Experiments

6.1 Experimental setup

Dataset We use three different datasets for evaluation:

– Caltech Multi-Distance Portraits (CMDP) [18]: This
dataset contains portrait images of different people taken
from various distances. It provides the same identities
taken from different distances. We use the CMDP dataset
for quantitative evaluations.

– USC perspective portrait database [60]: This database
contains images with single faces with different levels of
perspective distortions. There are no references or ground
truth images, so we only use these images for visual
comparisons.

– In-the-wild images: We also collect many in-the-wild
photos online with severe perspective distortions on faces.
We use these images for visual comparisons.

Compared methods We compare our method with:

– Portrait perspective undistortion: Fried’s [18] and Zhao’s [60]
focus on the same task as us but they are 2D warping-
based solutions. Since neither releases official implemen-
tations, we re-implement the method of [18]. In addition
to comparing with our own implementation of the two
methods, we also obtained several results from the web-
site of [18] and the authors of [60] for comparison.

– Wide-angle undistortion methods: Shih’s [43] is a tech-
nique that solves a different undistortion problem with
us: distortion caused by a wide-angle lens. Their basic
idea is to apply the stereographic projection to the dis-
torted image.

– 2D/3D GAN inversion methods: PTI [40], Ko’s [26],
HFGI3D [55], and Triplanenet [7]. Although not explic-
itly dealing with portrait perspective correction, these
2D/3D GAN inversion methods enable 3D GANs to gen-
erate novel views from a single image.

– 3D photography: 3DP [42] is a method that can render
novel views from a single RGB-D image.

Evaluation metrics We use five evaluation metrics to evalu-
ate the performance of portrait perspective correction:

– Euclidean distance landmark error: We first align all
output faces, and their corresponding reference faces ac-
cording to the dense facial landmarks detected via me-
diapipe [28]. We follow a similar alignment method by
StyleGAN [23] to align the landmarks. We then calcu-
late the normalized landmark distance error in the 2D
Euclidean space.

– Photometric errors PSNR, SSIM, and LPIPS: We also
calculate photometric errors between the aligned output

Table 1: Quantitative comparison on the CMDP dataset [9]. We
evaluate 43 faces projected from 60 cm to 480 cm. The photomet-
ric loss is low because reference images are captured asynchronously
with different camera parameters from the inputs, resulting in differ-
ent appearances and poses. ‘W’ represents warping-based and ‘G’ de-
notes GAN inversion-based. ⋆Results from the official website. †Our
re-implementation. Although the results differ from the original ones,
the metric scores are comparable.

Method Type LMK-E↓ PSNR↑ SSIM↑ LPIPS↓ ID↑
⋆Fried’s [18] W 0.175 15.41 0.724 0.188 0.893
†Fried’s [18] W 0.165 14.41 0.716 0.208 0.860

Shih’s [43] W 0.236 12.95 0.696 0.258 0.855
3DP [42] W 0.195 13.08 0.696 0.268 0.847
PTI [40] G 0.191 15.92 0.717 0.197 0.758

Ko’s [26] G 0.180 15.41 0.710 0.206 0.689
HFGI3D [55] G 0.177 15.75 0.724 0.198 0.829

Triplanenet [7] G 0.188 14.80 0.705 0.243 0.812
Ours G 0.138 17.52 0.747 0.167 0.859

images and corresponding references, including PSNR,
SSIM [52], and LPIPS [59]. We use a tri-map free mat-
ting algorithm [25] to remove the background and calcu-
late the photometric distances on the masked foreground.

– Identity similarity: We use ArcFace [15] to extract fea-
tures for the masked face foregrounds and compute the
cosine distance between facial features of output images
and reference images.

6.2 Quantitative evaluation

We evaluate our method on the CMDP dataset [9], and the
results in Table 1 indicate: (1) Our method outperforms oth-
ers in most metrics with a large margin; (2) All methods, in-
cluding ours, exhibit inferior performance in identity preser-
vation compared to the original version of [18]. This is pri-
marily due to the significance of face details in calculating
identity metrics. The original version of [18] has subtle ma-
nipulations and retains many details. GAN inversion-based
methods have the lowest identity score among all methods
because they may lose some crucial details. (3) Despite the
limitations of GAN inversion, our method achieves compa-
rable results to our reimplementation of the warping-based
method [18] in the identity metric.

6.3 Qualitative evaluation

We evaluate our proposed method on cropped face images
used by previous methods, and the comparisons are pre-
sented in Figure 5 and Figure 6. The changes to distorted
faces introduced by [18] and [43] are infinitesimal. In con-
trast, evident changes can be observed when distorted faces
are corrected by [60] and 3DP [42]. However, their correc-
tions lead to amplified distortions, where the middle part of

https://www.ohadf.com/projects/perspective-portraits/results/view_results.html
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Input Fried’s [18] Shih’s [43] 3DP [42] HFGI3D [55] Triplanenet [7] Ours Reference

Figure 5: Qualitative comparisons on the CMDP dataset [9]. Results of [18] are from their website. Our method renders faces closer to their
references while preserving the identity.

Input Fried’s [18] Zhao’s [60] Shih’s [43] 3DP [42] HFGI3D [55] Triplanenet [7] Ours

Figure 6: Qualitative comparisons on images collected by [60]. Results of compared methods [18,60] are from [60]. Our method produces
the least distorted and the most natural perspective correction results. Note that with the help of 3D GAN, our method can generate the ear that
originally occluded in the input images.

faces is less distorted, but the head and chin shapes still ap-
pear peculiar (Figure 6). Our method generates faces with
fewer perspective distortions while preserving identity. More-
over, with the aid of 3D GAN, our approach can generate
occluded parts present in the original input images, such as
ears. It is worth noting that other GAN inversion-based so-
lutions [55,7] struggle to recover the correct face shape.

We further demonstrate this advantage on our collected
in-the-wild faces with severe distortions and showcase the
perspective distortion correction results in Figure 7. We no-
tice that the re-implemented method [18] performs similarly
to [60]. Additionally, we observe that the GAN inversion-
based method [26] encounters local minima and generates
faces with incorrect shapes. The visual results clearly demon-

strate that our perspective-aware 3D GAN inversion proves
to be an effective approach for portrait perspective correc-
tion, outperforming the warping-based method [18] and the
existing 3D GAN inversion-based method [26].

6.4 Full-image qualitative evaluation

We validate our system’s ability to process in-the-wild full
images, as demonstrated by the visually pleasing results in
Figure 1 and Figure 8. In comparison, the other methods
fail to reduce perspective distortion or generate harmonious
results effectively. Specifically, (1) the changes caused by
Fried’s [18] are subtle, and the manipulated face remains
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Input Fried’s [18] Ko’s [26] Ours Input Fried’s [18] Ko’s [26] Ours

Figure 7: Visual results for our collected severely distorted in-the-wild face images. We enlarge the camera-to-subject distance to×8 times the
estimated distance. Our method performs well in dealing with these seriously distorted faces and recovering occluded regions, such as ears.

distorted. (2) Zhao’s [60] significantly alters the face, but the
result still exhibits an asymmetric face shape, weird head
and chin shapes, and inconsistency between the body and
face. (3) Although 3DP [42] can manipulate the body and
somewhat mitigate face distortion by using the depth from
3D GAN, the face is still distorted. (4) Combining Ko’s [26]
and STIT [48] results in a seamless image but lacks har-
mony. On the other hand, our manipulated faces exhibit har-
monious integration with corresponding bodies, with fewer
distortions.

6.5 Video evaluation

In comparing our method with others in rendering dolly-
zoom videos from distorted input, the results in supplemen-
tal materials demonstrate that only our approach can consis-
tently generate continuous dolly-zoom videos. In contrast,
other methods show the following limitations: (1) Fried’s [18]
corrects distortion but performs worse than ours, with min-
imal manipulation in non-face regions. (2) 3DP [42] is un-
able to manipulate the face. (3) Combining Ko’s [26] with
STIT [48] leads to serious distortion.

6.6 Ablation study

We conduct ablation studies on both the CMDP dataset and
our collected seriously distorted face images. The results
are presented in Table 2 and Figure 9. Without camera op-
timization or any of our proposed designs for easing op-
timization, the face parameter gets stuck in a sub-optimal
solution, leading to poor performance. The proposed focal

Table 2: Quantitative results of ablation study. Focal length repa-
rameterization and distance initialization are crucial. Removing any
of them (v3 and v5) significantly degrades performance. Optimiza-
tion scheduling is important to avoid sub-optimal results. Discarding
camera optimization yields the worst photometric metric. Our method
achieves the best performance.
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LMK-E↓ LPIPS↓

low bound (input) – – – – – 0.227 0.249
(v0): w/o all ✗ ✗ ✗ ✗ ✗ 0.190 0.198
(v1): w/o cam. opt. ✗ – ✓ – ✓ 0.159 0.204
(v2): w/o rot. repa. ✓ ✗ ✓ ✓ ✓ 0.167 0.203
(v3): w/o focal repa. ✓ ✓ ✗ ✓ ✓ 0.183 0.200
(v4): w/o opt. sche. ✓ ✓ ✓ ✗ ✓ 0.151 0.182
(v5): w/o closeup cam ✓ ✓ ✓ ✓ ✗ 0.185 0.198
Ours ✓ ✓ ✓ ✓ ✓ 0.138 0.167

length reparameterization and distance initialization are cru-
cial for achieving good results, and removing any of them
results in a significant degradation in performance, with the
reconstructed face geometry being wrong and the corrected
image remaining distorted as the input. While removing op-
timization scheduling, rotation reparameterization and cam-
era optimization can still correct the distortion to some ex-
tent, it is more prone to fall into a local minimum, generating
a face far away from the reference. The rotation reparame-
terization reduces the degree of freedom and regularizes the
orthogonality of the rotation matrix.

Our pipeline’s ablation studies investigate the stitching
post-processing, as shown in Figure 10. When we directly
paste the manipulated face into the input image, it results in
an inconsistency between the face and body parts. However,
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Input Fried’s [18] Zhao’s [60]

3DP [42] + Rendered face depth Ko’s [26]+STIT [48] Ours

Figure 8: Comparison on in-the-wild full images. Results of compared methods [18,60] are from [60]. Our system produces a visually pleasing
result with the least distortions. Note that our rendered face is harmonious with the body.

Input (v0) (v1)

(v2) (v3) (v4)

(v5) Ours Reference†

Figure 9: Qualitative results of ablation study. Our full model pro-
duces a visually pleasing result closest to the reference. It cannot per-
form well if any of these designs are removed. Although quantitative
results in Table 2 reveal that optimization scheduling is not dominant
in our method, it is necessary to avoid sub-optimal results. †Note that
the reference is not the ground truth.

we can achieve seamless blending with further processing,
producing a more harmonious and natural result.

6.7 Manipulation to different distances

We assess our model’s ability to render images across vari-
ous camera-to-subjective distances using the CMDP [9] dataset.
This dataset comprises images of subjects captured from
seven distinct distances. We select the closest image for each
subject as our input and then project it into the remaining six
distances. As shown in Figure 11, our method consistently
outperforms the baseline PTI [40] across all distances, with
its superiority increasing as the distance grows.

6.8 User study

We conduct two user studies to compare our perspective 3D
GAN inversion method with conventional GAN inversion
method PTI [40] with estimated cameras. In the first study,
we presented results on 15 CMDP images alongside refer-
ence images to 56 participants and asked them to identify
which method yields an image that closely resembles the
reference. In the second study, we showed results on 10 in-
the-wild images to 25 users and asked which method pro-
duces a less distorted image. Results in Figure 17 demon-
strate that our method consistently outperforms PTI [40] in
correcting distortion. However, we also find that in some in-
stances, PTI [40] performs better because the input faces in
these cases have lower distortion levels, close to weak per-
spective projection.
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Input Direct paste STIT [48]

Warp Warp+Paste Our final

Figure 10: Qualitative results for ablation study of geometric-aware stitching. 3D GANs can only reproject a cropped face image to a virtual
far distance while leaving the rest of the image distorted. Pasting the modified face back into the original image can lead to inconsistencies
between the cropped face and the untouched regions. This geometry inconsistency cannot be reduced by the method [48] used by 2D GAN
inversion/manipulation. To address this issue, we reproject the background and fine-tune the generator to achieve seamless blending.

PTI Ours

Distance [m]

Figure 11: Evaluation of rendering at different distances. We pro-
jected the input distorted images to various distances, with the result at
each distance being an average of 43 faces. Notably, our method con-
sistently outperforms PTI [40] by a significant margin as the projected
distance increases.

CMDP

Ours

Uncertain
PTI

3.2%
23.8%

Ours

Uncertain PTI

73.0%

5.3% 11.3%

83.3%

In-the-wild

Figure 12: User study. We conducted two user studies, one on the
CMDP dataset [9] and another on our collected in-the-wild dataset.
User prefer our results than PTI [40].

6.9 Bonus features

Thanks to the generative ability of 3D GANs, our method
enjoys additional advantages over warping-based methods
in face completion and semantic editing.

Input Output ×1 Output ×2 Output ×4

Figure 13: Face completion. Our method can apply directly to
partially-occluded faces and does not expect a well-processed face.

Face completion Figure 13 demonstrates that our method
can effectively correct the distortion in partially occluded
faces. This capability is beneficial for seriously distorted
faces near image boundaries, which cannot be handled by
warping-based methods like [18] due to the absence of face
landmarks, or [60], which cannot generate occluded regions.

GAN editing Figure 14 shows that our method improves the
editing ability of 3D GAN on perspective-distorted input
face images. Inverting the input distorted face with PTI [40]
can lead to an out-of-distribution facial latent code. Edit-
ing these latent codes could generate unwanted artifacts. In-
stead, our method inverts the image to an in-distribution face
latent code that can be edited more accurately.
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Figure 14: Editing ability. Our method (bottom) improves the editing
ability of 3D GAN on perspective-distorted faces. Without our method
(top), inverting the input distorted face leads to an out-of-distribution
face latent code. Consequently, it leads to poor editing quality. On the
other hand, our method inverts an in-distribution face latent code that
enables us to edit. It facilitates downstream applications.

Input Inversion Input Inversion

Figure 15: Failure cases. Limited by the training set of GAN, our
method cannot handle out-of-distribution faces, e.g., tongue outside
the mouth (left), hand touch face (right). A potential solution is first
to mask these regions for GAN inversion. Then, transfer the textures to
the manipulated face.

6.10 Limitations

While we advocate for our method, it has limitations, in-
cluding its inability to handle out-of-distribution faces and
its inability to process in real-time.

Out-of-distribution faces As shown in Figure 15, our method
fails for out-of-distribution faces, including extreme expres-
sions and occluded faces (by hand or other objects). In these
cases, GAN inversion struggles to comprehend the face and
may generate the face based on its own interpretation (e.g.,
the left example in Figure 15 where the tongue is mistaken
as part of the lip in the output). This can result in dreadful
artifacts, as seen in the right example of Figure 15, where
the hand looks distorted in the output. A potential solution is
first to mask these regions for GAN inversion. Then, transfer
the textures to the manipulated face.

Inference speed We recognize that the current system does
not operate in real time. Specifically, the GAN inversion pro-
cess takes approximately 130 seconds to process a cropped
face. This is because we implement our method based on
the optimization-based inversion. The time required for op-
timization is in line with PTI [40]. However, recent advance-
ments [47,58,7] explored encoder-based inversions for 3D
GANs have successfully reduced inference times to less than
1 second. These methods hold the potential to be seamlessly
integrated into our perspective-aware 3D GAN inversion,

significantly enhancing inference speed. Additionally, the
encoder-based approach can overcome our current limita-
tion of optimizing each individual photo. Applying these
encoder-based methods to our task would require training
the encoder with paired perspective-distorted and ground-
truth undistorted images. We leave the extension of speed
improvement to future work.

7 Conclusions

We present a method for portrait perspective distortion cor-
rection. Our core idea is to leverage a 3D GAN inversion
method to recover plausible facial geometry and reveal hid-
den facial parts such as ears. We explore several design choices
such as closeup camera-to-face distance initialization, op-
timization scheduling, focal length reparameterization, and
landmark constraints. Furthermore, we establish a protocol
of quantitative evaluation for the portrait perspective distor-
tion correction. Quantitative and visual comparisons demon-
strate the improved performance of our pipeline over exist-
ing methods.
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Appendix

A Discussions

A.1 Comparison with existing GAN inversion

3D GAN inversion for far vs. close-up portraits (Figure 16)
Existing 3D GAN inversion methods [45,26,27] are designed for in-
put face images captured at far distances, where the weak perspective
model can be approximated, and inversion is easier due to the reflection
of ground truth faces. Therefore, they may use inaccurate camera-to-
subjective distances and focal lengths. However, our method targets
perspective undistortion and is meant for close-up face images. In this
scenario, the face latent code with different camera-to-subjective dis-
tances and focal lengths can generate faces with significant variations.
As a result, estimating accurate camera-to-subjective distance and fo-
cal length becomes crucial for producing high-quality 3D face images.
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Figure 16: Our perspective-aware GAN inversion method differs from
conventional GAN inversion approaches as it specifically focuses on
close distances (a), whereas existing methods like [45,26,27] target far
distances where a weak perspective model can be reasonably approx-
imated (b). By comparing landmark errors between face images ren-
dered with various camera parameters and the corresponding ground
truth face, we observe that the error decreases exponentially as the
imaging distance increases. We observe that the distance between im-
ages 1 and 2 is similar to that between 3 and 4. However, the faces in
images 1 and 2 exhibit significant differences, while the faces in im-
ages 3 and 4 appear similar. Additionally, images 1 and 2 show distinct
variations from the ground truth image 5, while images 3 and 4 share
similarities with it.

Comparison to PTI [40] We find that in certain cases in Figure 12,
PTI performs better, especially when the input face has lower distor-
tion levels, close to weak perspective projection. In Figure 17, we uti-
lize synthetic data to reveal that as the distortion level decreases, the
performance difference between the two methods also diminishes.

Visualization of inversion process In Figure 18, we visualize the
optimization process. We observe that without our perspective-aware
designs, 3D GAN inversions often get trapped in local minima and
fail to reconstruct the correct face geometry or correct the perspective
distortion. Our proposed method overcomes these limitations and pro-
duces more accurate geometries and visually pleasing results.
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Figure 17: Comparison with PTI on synthetic data.

A.2 Motivation for method design

Alleviating ambiguity Reconstructing the correct face geometry
from distorted images for perspective undistortion relies on accurately
estimated camera parameters. To address this challenge, we propose
a joint optimization approach that considers both face and camera pa-
rameters. However, the ambiguity in Figure 19 makes the task chal-
lenging. As shown in Figure 20, adding naı̈ve camera optimization with
PTI does not yield satisfactory results. To overcome this, we design a
perspective-aware inversion method that effectively alleviates ambigu-
ity.

Optimization scheduling When the camera parameters are incor-
rect, the face optimization process is more likely to fall into local min-
ima, which in turn leads to the failure of camera parameter optimiza-
tion. This interdependence between face and camera optimization makes
the problem particularly challenging. Hence, we propose to optimize
camera firstly.

Focal length reparameterization The reparameterization is mo-
tivated by two reasons. (1) During camera optimization, we observe
that the focal length is more sensitive than the camera-to-subjective
distance, making it difficult to optimize the latter. (2) Focal length
and camera-to-subjective distance are related, and adjusting the focal
length when changing the distance allows us to maintain the same FOV,
reducing the degree of freedom in optimization.

B Method Details

B.1 Derivation of Equation (8)

Let pc0 = (X0, Y0, Z0)
T ∈ R3 denotes the initial coordinate of one

eye in the camera system. Its corresponding coordinate in the world
system is given by

pw0 = R−1
0 (pc0 − t0) . (15)

Changing the camera to R, t yields a new coordinate

pc = RR−1
0 (pc0 − t0) + t , (16)

where pc = (X,Y, Z)T ∈ R3, and Z is equivalent the camera-to-
subjective distance d. We assume the rotation matrix changes slightly,
i.e., R0≈R. Hence, we have

pc ≈ pc0 − t0 + t , (17)

We also assume tx, ty , cx, and cy do not change. To guarantee the eye
position is fixed, we have the relationship f/f0=d/d0=Z/Z0=α .
Substituting Equation (17) into the relationship, we obtain the solution:

α = (d0 − (tz0 − tz))/d0 . (18)

B.2 Algorithm of perspective-aware 3D GAN inversion

Algorithm 1: Algorithm of perspective-aware 3D
GAN inversion

Input: Pre-trained generator Gθ .
Output: Optimized camera parameter ĉ, face latent code ŵ,

generator Gϑ, and updated parameters d0, f0 and
tz0.

1 // Initialization
2 Get camera parameters c0 with focal length f0 and z-axis

translation tz0.
3 Get the face latent code w0.
4 Get the camera-to-face distance d0.
5 Initialize c← c0, w← w0, δtz ← 1, γ ← 1.
6 Get a close-up distance t← ϵ.
7 Get α according to Equation (8).
8 Update f ← αf0.

9 // Optimize camera parameters
10 Fix face latent code w, weights of Gθ .
11 while iterations k < 300 do
12 Get the gradients∇t,∇R,∇γ .
13 Optimize δtz ← δtz + λcam∇t.
14 Optimize tz ← tz0/

√
δtz .

15 Get α according to Equation (8).
16 Update f ← γαf0.
17 Optimize p← p+ λtiny×λcam∇p, p ∈ {R, tx, ty, γ}.
18 end

19 // Optimize camera and face parameters
20 Fix weights of Gθ .
21 while iterations k < 700 do
22 Get the gradients∇t,∇R,∇w,∇γ .
23 Optimize δtz ← δtz + λcam∇t.
24 Optimize tz ← tz0/

√
δtz .

25 Optimize w← w + λface∇w.
26 Get α according to Equation (6).
27 Update f ← γαf0.
28 Optimize p← p+ λtiny×λcam∇p, p ∈ {R, tx, ty, γ}.
29 end

30 // Pivotal tuning
31 Fix face latent code w, camera parameters c.
32 while not converge do
33 Get the gradients∇θ .
34 Optimize Gϑ ← Gθ + λgan∇θ .
35 end
36 Update ĉ← c, ŵ← w
37 Get d
38 Update d0 ← d, f0 ← f , tz0 ← tz

B.3 The proposed workflow

– 3D GAN: In our experiments, we employ the EG3D model [10]
pre-trained on the FFHQ dataset [23]. Our method, however, is
agnostic to the underlining 3D GAN models. For example, other
3D GANs such as IDE-3D [45] could also be used.

– Camera initialization: We initialize the camera parameters by fit-
ting a 3DMM [17], consistent with the EG3D training process, en-



16 Zhixiang Wang et al.
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Figure 18: Visualization of optimization. Our method (bottom) first optimizes the camera-to-subject distance and then the face latent code. In
contrast, PTI [40] (top) and Ko et al. [26] (middle) optimize the face latent code while maintaining a fixed, incorrect camera-to-subject distance.
This approach makes them susceptible to local minima, resulting in inaccurate shapes, such as those lacking ears.
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Figure 19: The ambiguity problem arises from the fact that multiple
combinations of focal length, camera-to-subjective distance, and face
shapes can result in similar faces. Consequently, if the camera parame-
ters are estimated incorrectly, it can lead to incorrect face geometry for
a given image.

PTI ReferenceInput PTI + Cam opt Ours

Figure 20: Naı̈ve camera optimization with PTI does not provide sig-
nificant improvement; in fact, its performance is similar to PTI alone.

suring the compatibility between the initialized camera parameters
and EG3D.

– Monocular depth estimation: We incorporate the MiDaS approach [38].
– Reprojection: we employ 3D Photo Inpainting [42] to reproject the

background, including partial body and hair elements.
– Background inpainting: As 3D Photo Inpainting [42] may not suf-

ficiently reveal the hidden background and could result in unde-
sirable gaps, we first use Stable Diffusion [41] or DALL·E2 to
inpaint the background when processing full-frame input images.
We then reproject the inpainted background and utilize it to re-
place the background in our rendered full-frame image. For this

task, we leverage MODNet [25] to separate the person from the
background.

B.4 Parameters setting

– We set learning rates:
– λface = 1×10−2

– λface = 5×10−3

– λgan = 3×10−4

– λtiny = 0.1
– We let the parameter ϵ equal 0.5
– We set the rendering parameters ray start and ray end to
auto for close-up faces

C Data Avability

We evaluate our methods using three different datasets:

– Caltech Multi-Distance Portraits (CMDP) Dataset [18]: This
dataset is publicly available and has been referenced in our manuscript.

– USC Perspective Portrait Database [60]: The USC perspective
portrait database was collected by [60] from the internet.

– In-the-Wild Images: We collected in-the-wild testing images from
the internet, such as Unsplash and Adobe Stock, with a Standard
license. We will provide links for each image.

https://unsplash.com/license
https://stock.adobe.com/license-terms
https://stock.adobe.com/license-terms
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Figure 21: The optimization of camera-to-subjective distance can be challenging. To demonstrate this, we use a target image rendered by our 3D
GAN and find the camera parameters using its ground truth face latent code. Without focal length reparameterization (w/o), adjusting the distance
becomes difficult. However, with our focal length reparameterization (w/), optimizing the distance and approaching the ground truth (GT) distance
becomes easier.


