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DiffBody: Human Body Image Restoration with
Generative Diffusion Prior

Yiming Zhang, Lionel Z. Wang*, Sizhuo Ma*, Xinjie Li, Jian Ren, Zhihang Zhong†, and Jian Wang†

Abstract—Human body image restoration is crucial for various applications but remains challenging due to the limitations of generative
models: General image restoration methods built on generative models may generate unnatural textures, noticeable structural
misalignments, and significant loss of fine details. To address these shortcomings, we present DiffBody, a novel human body-aware
diffusion model that incorporates domain-specific knowledge to significantly enhance restoration quality. Our approach adopts a
two-stage framework: (1) a multi-branch joint diffusion model generates preliminary priors, including normal and depth maps supported
by a robust reconstruction pre-processing step; (2) a restoration stage refines the output using a body-prior ControlNet and a color
adapter, ensuring structural accuracy and color consistency. Extensive quantitative evaluations, qualitative evaluations, and user
studies validate the superior performance of DiffBody in producing perceptually high-quality human body restoration results. Code is
available at https://github.com/yimingz1218/DiffBody.
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1 INTRODUCTION

B LIND image restoration (BIR) aims to enhance the qual-
ity of degraded images through processes like denois-

ing [1], sharpening [2], deblurring [3], super-resolution [4],
etc., a domain that has been significantly advanced by neu-
ral networks. Although general BIR has made substantial
strides, users often exhibit a greater interest in restoration
of specific subjects such as human faces [5] and bodies.
Restoration of human body images can have a profound im-
pact on various human-centric applications, such as improv-
ing portrait quality in social media and aiding downstream
tasks like person re-identification [6], 3D reconstruction [7],
etc.

While the end-to-end reconstruction paradigm [8], [9]
has made great progress for BIR, it struggles to handle com-
plicated combinatorial and severe degradations. Recently,
a generative paradigm has emerged, which harnesses the
power of generative models such as generative adversarial
networks (GANs) [10] and diffusion models [11]. Generative
models possess comprehensive prior knowledge of how a
natural, high-quality image looks like learned from large
amounts of data, which can be used to fill in reasonable
details to the degraded images. Recent diffusion models
have enhanced the perceptual quality and versatility of
image restoration [12], [13], [14], thereby expanding the
applicability of image restoration in practical contexts.

Despite these advancements, the specific domain of hu-
man body image restoration remains underdeveloped. Cur-
rent diffusion-based general restoration models [13], [14],
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[15] often produce artifacts in low-quality human images,
such as unnatural and overly smoothed textures, incorrect
anatomy, and loss of body details, as shown in Fig. 1. This
problem can be examined through the perception-distortion
tradeoff [16]: image restoration models inherently favor ei-
ther perceptual quality or low distortion but cannot excel at
both. While the preference for quality or distortion varies by
task, perceptual quality is crucial in human body restoration
due to our higher sensitivity to distortions in limbs and skin.
For example, while minor distortion in background objects
may go unnoticed, artifacts in human bodies such as plastic-
like skin and missing fingers are more noticeable and can
make users immediately reject the result.

In this work, we aim to push the performance of human
body image restoration by prioritizing perceptual quality
to enhance viewer comfort [17] and ensure a more natural
and pleasant user experience. We present DiffBody, a novel
diffusion model tailored to human body restoration. The
key idea is to effectively guide a pretrained diffusion model
to restore clear and realistic human bodies using extracted
human priors [18], implemented through a two-stage pro-
cess. In Stage 1, we use SwinIR [8] to preprocess degraded
images and produce a preliminary restoration, from which
we extract essential priors: pose, text, depth, and normal
maps. Depth maps ensure structural alignment, while nor-
mal maps preserve surface details and correct unnatural
textures. Pose information maintains anatomical coherence,
ensuring a visually consistent human body structure. Stage
2 integrates these priors for detailed restoration. To address
inconsistent colors that could undermine structural correc-
tions, we introduce a emphcolor adapter for accurate color
alignment. Although no existing metric quantifies viewer
comfort, we conduct the viewer comfort test in user studies to
confirm that our method delivers the most visually coher-
ent and comfortable human body restoration compared to
existing approaches.

Our main contributions are as follows: (1) Rather than
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Fig. 1. While the preference for quality or distortion varies by task, perceptual quality is crucial in human body image restoration due to our higher
sensitivity to distortions in limbs and skin. Our DiffBody model shows superior performance compared to other methods, particularly passing the
viewer comfort test as demonstrated in our user study.

forcing the model to strictly fit the distribution of low-
quality images, we adopt a perception-prioritized approach
that guides generation to pass the viewer comfort test. (2)
We propose a novel two-stage framework: in Stage 1, we
generate priors from low-quality images to guide restora-
tion, and in Stage 2, we use these priors to refine human
body restoration, assessing the impact of different priors
on output quality ; (3) We introduce an adapter module to
address color inconsistencies, ensuring accurate and realistic
color reproduction in restored images.

2 RELATED WORK

Perception-distortion tradeoff and evaluation methods:
[16], [19] shows a tradeoff between perception and dis-
tortion: As the mean distortion (the dissimilarity to the
ground truth image) decreases, the perceptual quality (the
consistency with natural image statistics) must decrease as
well. This tradeoff can be visualized as a distortion-quality
curve as shown in Fig. 1. Restoration results that pass the
viewer comfort test are unattainable using conventional
approaches. Our goal is to improve perceptual quality,
delivering visually appealing images that better align with
human perception. This is reflected in improved perceptual
metrics such as LPIPS [20], ManIQA [21], ClipIQA [22],
and MUSIQ [23]. However, achieving this may come at the
expense of potential visual distortions and lower scores on
traditional objective metrics like PSNR and SSIM [14], which
are less important for human body restoration. To assess
viewer comfort, which cannot be measured by existing
methods, we introduce the comfort pass test and comfort
scoring in our user study.

Blind image restoration: Blind Image Restoration aims
to restore images without prior knowledge of the specific

degradation model. Rather than relying on a known cor-
ruption process, BIR algorithms generalize across different
types of degradation, making it a more challenging task.
Predominantly, existing literature [5], [24], [25], [26], [27]
has concentrated on discerning a latent code situated in the
latent space of a pre-trained GAN. Recent advancements in
this domain [28], [29], [30], [31] have transitioned towards
the utilization of DDPMs [28], marking a notable shift from
conventional approaches. Other novel approaches such as
DDRM [32] utilizes SVD to address linear image restora-
tion challenges, presenting an innovative and simplified
approach. DDNM [33] delves into vector range-null space
decomposition to develop a novel sampling strategy, en-
hancing image restoration efficiency. DiffBIR [13] and SUPIR
[14] aims to exploit a pretrained powerful generative prior
to solve the BIR problem. In the realm of domain-specific
image restoration models, a predominant emphasis has been
placed on blind face restoration, as evidenced by works
such as [34], [35], [36], [37], [38]. In contrast, the equally
critical domain of human body restoration has not seen
comparable development, a gap that our DiffBody model
seeks to address.

Controllable Human Image Generation: Traditional
methods for generating controllable human images mainly
fall into two categories: those based on Generative Adver-
sarial Networks (GANs) [39], [40] and those using Varia-
tional Autoencoders (VAEs) [41], [42], both leveraging refer-
ence images and specific conditions for input. Recent studies
have ventured into enabling the generation process through
textual instructions, though these tend to limit user input
to basic pose or style adjustments [43], [44]. State-of-the-art
methods enable detailed control over vocabulary and pose
including ControlNet [45], T2I-Adapter [46], HumanSD [47],
HyperHuman [48]. These works have shown that diffusion
models are capable to generate human images that contain
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rich detail and natural texture, which give us confidence
that they can be utilized for high-quality human body image
restoration.

3 PROPOSED METHOD

3.1 Preliminary: Latent Diffusion Model

Our method leverages the exceptional generative capabili-
ties of Latent Diffusion Models (LDM) [30]. By compressing
images into a lower-dimensional latent space before per-
forming the diffusion process, LDMs achieve remarkable
efficiency and detail in image synthesis. The model initi-
ates a reverse diffusion process starting from a distribution
of latent noise, gradually denoising this representation to
reconstruct the image. This process is facilitated by a U-
Net architecture, which iteratively refines the latent features
under the guidance of textual conditions embedded by a
pre-trained text encoder such as CLIP. The primary objective
in training these models involves minimizing the error in
the predicted noise.

3.2 Degraded Image-driven Joint Diffusion for Human-
centric Prior

In Stage 1, the framework takes the degraded image as
input to generate the human-centric priors, as shown in
Fig. 2 (top). As illustrated in the model structure, degraded
image ILQ is preprocessed by a robust image restoration
model SwinIR [8] to produce preliminary restoration :
IIR = SwinIR(ILQ). IIR is subsequently passed to MMPose
[49] and LLaVA [50] to extract the human pose Ipose and
the corresponding textual prompt T , respectively: Ipose =
MMPose(IIR), T = LLaVA(IIR). The description T is then
input into CLIP to extract the textual features ct = CLIP(T )
as text prompts to the network. With these foundational
elements in place, we encode the latents of IIR and Ipose
using a VAE, producing cIR = E(IIR) for the restored image
and cp = E(Ipose) for the pose. cp is then concatenated with
zt (noisy latent at timestep t) to form ẑt.

To generate the priors, we use a multi-branch U-Net with
copies of input and output layers, which has been shown to
be able to simultaneously generate high-quality, spatially-
aligned images of different domains [48]. This model is
trained in two steps, with the first step focusing on gen-
erating the depth, normal, and RGB components based on
the pose and textual conditions cp and ct:

LU = Ezt,t,ct,cp

[
∥ϵd − ϵθd(ẑt, t, ct)∥

2
2

+ ∥ϵn − ϵθn(ẑt, t, ct)∥
2
2 + ∥ϵi − ϵθi(ẑt, t, ct)∥

2
2

]
, (1)

where ϵ∗ and ϵθ∗ represents the noise added dur-
ing diffusion and predicted during denoising, respectively.
The subscripts d, n, i denotes the depth, normal and RGB
branches.

Once the U-Net has been trained, we introduce the
latent cIR from the restored image and shift to training
ControlNet [45] with the following objective:

LC1
= Ezt,t,ct,cr,cp

[
∥ϵd − ϵθc(ẑt, t, ct, cr)∥

2
2

+ ∥ϵn − ϵθc(ẑt, t, ct, cr)∥
2
2 + ∥ϵi − ϵθc(ẑt, t, ct, cr)∥

2
2

]
. (2)

In this phase, only the ControlNet is trained such that the
whole network is retargeted to an image restoration pro-
cess conditioned on the restored image latent cIR. Stage 1
outputs three separate channels: Ires, Idepth, Inormal, which
are then used in Stage 2 to further enhance the overall per-
formance of human image restoration. The textual prompt
is also updated in this stage, where T ′ = LLaVA(Ires) is
generated from the refined image Ires.

3.3 Enhancing Human Image Restoration through
Human-centric Prior and Color Adapter
In Stage 2, the human priors IIR, Ipose, Idepth, and Inormal

obtained from Stage 1 are processed by convolutional layers
Fi, followed by a linear fusion layer cg = α1F1(IIR) +
α2F2(Ipose) + α3F3(Idepth) + α4F4(Inormal), as shown in
Fig. 2 (bottom). The fused features are then fed to a Control-
Net to guide a pretrained latent diffusion model. In parallel,
we use a color adapter where the restored image Ires is
initially encoded by CLIP and subsequently aligned through
a dedicated projection module [51]. After a cross-attention
module, the text prompt and Ires are encoded as c′i and c′t,
respectively.

The Stage 2 model is again trained in two steps: In
the first step, we train the ControlNet with the fused prior
features and the text features. The loss can be defined as:

LC2 = Ezt,t,c′t,cr,cp

[∥∥ϵ− ϵθ′
c
(zt, t, c

′
t, cg)

∥∥2
2

]
. (3)

Empirically, we find that providing IIR (the initial restora-
tion) to the model, rather than Ires (the further restored
image), helps mitigate potential artifacts that may be intro-
duced during restoration process in Stage 1.Our rationale is
that diffusion models, particularly those based on Control-
Net, are inherently more effective at adding plausible details
to under-specified regions than at altering or correcting
erroneous details that were not present in the original input,
while Ires may carry forward artifacts introduced in the first
stage, potentially leading the model to reinforce or amplify
them.

Once the ControlNet has been trained, we train the color
adapter with the image CLIP features c′i using the full loss:

LA = Ezt,t,c′t,c
′
i,cg

[∥∥ϵ− ϵθ′
c
(zt, t, c

′
t, c

′
i, cg)

∥∥2
2

]
. (4)

This step is crucial because providing the depth and normal
maps, rather than only the degraded image, gives the model
greater flexibility in generating outputs. Although Ires may
contain distorted image details, it generally retains accurate
color information, as it is guided solely by IIR and is
not affected by the structural priors (depth and normal
maps). Therefore, an additional color adapter is needed
to enhance and preserve the original color characteristics
during generation. Fusing the Ires information with the
CLIP embedding broadens the model’s learning paradigm
to better capture color information. This fusion enables
the model to handle color inconsistencies more effectively,
resulting in more robust and higher-fidelity restoration. The
synergy of complementary information from the degraded
images, text prompts, poses, depth maps and normal maps
allows the model to restore images with greater accuracy,
especially when critical information, such as color and fine
details, has been obscured due to image degradation.
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Fig. 2. Method overview. In the first stage, we employ a multi-channel joint diffusion model with robust reconstruction to generate priors from
degraded images. In the second stage, these priors are used to guide image reconstruction, enhancing quality through a body-prior ControlNet
and a color adapter for improved structural and color consistency. Since each stage involves two separate training processes, we use the terms
”Trainable” and ”Frozen After Training” to distinguish their training order and status.

4 EXPERIMENTAL RESULTS

4.1 Datasets
To address challenges like fragmented human figures and
varying image quality, we developed a dataset of five
million high-quality human images, each annotated with
MMPose, MiDaS depth [52], OmniNormal [53], and LLaVA
captions. We used a bucket-based resizing strategy, similar
to SDXL [54], categorizing images into five resolution buck-
ets (512×512, 512×768, 512×1024, 768×512, and 1024×512)
to accommodate different resolutions. To ensure consistent
quality, we applied Real-ESRGAN’s [9] degradation settings
to simulate realistic image degradation.

The final training set consists of around four million
human images from the CosmicMan dataset [55], refined
through cropping and annotation, and one million web-
sourced images, offering broader diversity in poses and
environments. For evaluation, we used the high-quality
SHHQ [56] dataset, which provides consistent resolution
and quality, making it an ideal benchmark for testing our
diffusion model’s performance.

4.2 Experimental Details
For prior generation in Stage 1, we employ Stable Diffusion
2.1-base [57] as the base model. An SDXL-based multi-
channel prior generator is not used due to its large number
of parameters, which surpasses the memory limitations of
our available GPU resources. The three-branch architecture
is initialized using the HumanSD [47] framework, with fine-
tuning applied only to the U-Net for 100,000 steps and a
batch size of 64. The model is optimized with the Adam [58]
optimizer at a learning rate of 10−5. After this phase, we

freeze the U-Net and fine-tune the ControlNet for another
100,000 steps with the same batch size, optimization settings
and hardware. For image restoration in Stage 2, we use
Stable Diffusion XL-1.0-base (SDXL) as the backbone. We
fine-tune the ControlNet over 100,000 steps, with a batch
size of 32 and gradient accumulation of 2. This phase is
optimized using Adam with a learning rate of 10−5. Follow-
ing this, we initialize the color adapter with IP-AdapterXL
Plus parameters and fine-tune it for an additional 200,000
steps with a batch size of 64. This final phase uses Adam
with a learning rate of 10−4 and is trained under the same
conditions and duration. All training sessions are conducted
using 8 NVIDIA A100 GPUs. For inference, we utilize
DDPM sampler [28] with 200 steps for both stages.

4.3 Comparisons with State-of-the-Art Methods

Quantitative Comparison: We use PSNR, SSIM, and LPIPS
[20] for full-reference evaluation. To better evaluate the per-
ceptual image quality, we further incorporate non-reference
image quality assessment (IQA) metrics: MANIQA [21],
CLIPIQA [22], and MUSIQ [23]. Since no human body-
specific BIR methods have been developed to our knowl-
edge, we compare DiffBody with leading general image
restoration methods: BSRGAN [59], Real-ESRGAN [9], Diff-
BIR [13], PASD [15], and SUPIR [14]. As shown in Table
1, DiffBody achieves strong performance on non-reference
IQA metrics such as MANIQA, CLIPIQA, and MUSIQ.
However, we observe relatively lower results on PSNR
and SSIM, which can be attributed to the limitations of
traditional metrics like PSNR and SSIM in accurately re-
flecting true image quality in restoration tasks as reported
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TABLE 1
Quantitative comparison across different degradation scenarios. Bold and underline represent the best and second-best performance,

respectively. For metrics marked with ↓, lower values are better, while for the other metrics, higher means better.

Degradation Visual Example Method PSNR SSIM LPIPS↓ ManIQA ClipIQA MUSIQ

Mixture:
Blur (σ = 2)

SR (×4)

BSRGAN 32.42 0.7522 0.3604 0.3203 0.7329 58.06
Real-ESRGAN 31.08 0.7741 0.4944 0.1364 0.6234 15.03

DiffBIR 32.30 0.7368 0.3302 0.2918 0.7067 54.35
PASD 32.52 0.7637 0.2793 0.4029 0.7142 72.16
SUPIR 31.90 0.7143 0.2871 0.4475 0.7251 74.04

DiffBody (ours) 28.69 0.6423 0.1986 0.4532 0.7621 73.20

Mixture:
Noise (σ = 40)

SR (×4)

BSRGAN 33.78 0.8400 0.1734 0.4548 0.7306 71.01
Real-ESRGAN 32.99 0.8428 0.1624 0.4235 0.5836 72.29

DiffBIR 34.15 0.8369 0.1610 0.3427 0.7156 69.66
PASD 33.31 0.7897 0.1733 0.4513 0.7224 75.63
SUPIR 33.55 0.7977 0.1633 0.4741 0.7250 75.06

DiffBody (ours) 29.36 0.6973 0.1973 0.4521 0.7421 76.34

Mixture:
Blur (σ = 2)

Noise (σ = 40)

BSRGAN 31.04 0.7488 0.5071 0.2422 0.7120 18.73
Real-ESRGAN 30.87 0.7633 0.5341 0.2094 0.5984 14.35

DiffBIR 30.94 0.7104 0.4996 0.1794 0.6903 48.55
PASD 31.23 0.6897 0.5171 0.2607 0.6737 34.23
SUPIR 31.44 0.7028 0.3489 0.5103 0.7182 69.72

DiffBody (ours) 29.48 0.6327 0.1598 0.4494 0.7366 70.01

Mixture:
Blur (σ = 2)

Noise (σ = 40)
SR (×4)

BSRGAN 32.93 0.7997 0.2832 0.2355 0.7111 24.44
Real-ESRGAN 30.88 0.7665 0.5162 0.1707 0.5436 14.33

DiffBIR 31.65 0.7211 0.4493 0.2197 0.6960 60.25
PASD 31.85 0.7544 0.3470 0.4001 0.7022 56.89
SUPIR 31.50 0.7102 0.3474 0.4609 0.7131 66.02

DiffBody (ours) 29.86 0.6360 0.1360 0.4690 0.7405 68.82

Mixture:
Blur (σ = 2)

Noise (σ = 20)
SR (×4)

JPEG (q = 50)

BSRGAN 32.93 0.7997 0.4800 0.3331 0.7150 58.91
Real-ESRGAN 31.55 0.7790 0.2719 0.3541 0.6011 61.02

DiffBIR 33.03 0.7879 0.2622 0.3427 0.7043 62.44
PASD 32.79 0.7854 0.2117 0.4019 0.7208 74.18
SUPIR 32.37 0.7533 0.2334 0.4780 0.7231 74.45

DiffBody (ours) 30.11 0.7202 0.1402 0.4861 0.7561 75.71

in previous work [14]. Furthermore, it also demonstrates
the inherent tradeoff between distortion and perception.
As human viewers are especially sensitive to artifacts on
human bodies, we primarily focus on perceptual quality to
prioritize viewer comfort.

Qualitative Comparison: Fig. 3 shows visual compar-
isons on the SHHQ dataset using the highest degradation
setting from Table 1 Row 5. Fig. 4 highlights finer details
on human bodies, in which our model performs the best in
skin texture and limb details. Additionally, Fig. 5 presents
comparisons on real-world images from the Market1501
dataset [60] (no synthetic degradation). Our model achieves
the best on fidelity and visual quality.

4.4 Ablation Studies
Effectiveness of LQ Image and Pose Conditioning in Stage
1: We evaluate the effectiveness of three different condition-
ing mechanisms on the low-quality (LQ) image and pose
in our Stage 1 model, as shown in Table 2. Specifically, LQ
Only uses only the LQ image as input to ControlNet without

TABLE 2
L2 loss comparison of normal map and depth map. Ln

2 represents the
loss between normal map and ground truth, Ld

2 represents the loss
between depth map and ground truth.

Mode Ln
2 Ld

2

LQ Only 151.9 531.2
LQ+Pose 180.2 561.8

LQ+Pose2U 106.8 488.7

the pose information. LQ+Pose (ours) feeds both the pose
and the LQ image into the ControlNet. LQ+Pose2U sends
the LQ image to the ControlNet while provide the pose for
the U-Net. Both quantitative results and visual examples in
Fig 6 show that the depth and normal maps generated by
LQ+Pose2U are the closest to the ground truth.

Effectiveness of Human Body Priors: To evaluate the
individual contributions of different human body priors in
the restoration, we trained three separate models, each ex-
cluding one of the priors (without pose, without depth, and
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LQ GT BSRGAN Real-ESRGAN DiffBIR PASD SUPIR DiffBody(ours)

LQ GT BSRGAN Real-ESRGAN DiffBIR PASD SUPIR DiffBody(ours)

LQ GT BSRGAN Real-ESRGAN DiffBIR PASD SUPIR DiffBody(ours)

Fig. 3. Qualitative comparison. Our model excels at generating fine body details, natural textures, and preserving the overall visual quality of the
human body. Zoom in for details.

TABLE 3
Quantitative comparisons demonstrating the effectiveness of

incorporating multiple priors. Notations follow those in Table 1. The
model utilizing all priors achieves the overall best results.

Depth Normal Pose PSNR SSIM LPIPS↓ ManIQA ClipIQA MUSIQ

✓ ✓ 28.72 0.7265 0.1907 0.4394 0.7603 73.7625
✓ ✓ 30.25 0.7243 0.1986 0.4436 0.7498 71.0442

✓ ✓ 28.11 0.6924 0.2105 0.4332 0.7492 70.8363
✓ ✓ ✓ 30.11 0.7402 0.1402 0.4861 0.7561 75.7115

without normal), and compared their performance against
our full model. Results are shown in Table 3. Our full
model, leveraging all three priors, achieves the best overall
performance. Visual comparisons in Fig. 7 demonstrate that
incorporating pose enhances limb details, the normal map
refines skin textures, and the depth map improves the 3D
spatial relationships between body parts.

Effectiveness of the Color Adapter: Finally, we evaluate
the impact of incorporating the color adapter (color-Ada).
Instead of PSNR and SSIM, we use CPSNR and CD-SSIM

TABLE 4
Qualitative comparison with and without the color adapter. The results
show that incorporating the color adapter significantly enhances fidelity

and overall visual quality.

Method CPSNR CD-SSIM LPIPS↓ ManIQA ClipIQA MUSIQ

w/o color-Ada 24.31 0.6423 0.1872 0.5160 0.7410 72.9950
w/ color-Ada 29.12 0.6821 0.1402 0.5380 0.7561 75.7115

instead as they evaluate the distortion on all three color
channels. Table 4 shows that the color adapter improves the
performance on all quality metrics. Fig. 7 further demon-
strates the color adapter’s capability to achieve more accu-
rate and faithful color recovery.

4.5 User Study

We conducted a user study to assess whether a method
passes the viewer comfort test, as metrics like PSNR, LPIPS,
or ManIQA cannot evaluate this aspect [61]. We processed
50 low-quality human body images using four diffusion-
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DiffBIR PASD

SUPIR DiffBody (ours)LQ GT

LQ GT

DiffBIR PASD

SUPIR DiffBody (ours)

DiffBIR PASD
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Fig. 4. Qualitative comparison on limb details and skin textures. Our DiffBody model outperforms other state-of-the-art diffusion-based methods on
human body images, particularly in limb details and skin textures. Zoom in for details.

LQ

DiffBIR PASD

SUPIR DiffBody (ours) LQ

DiffBIR PASD

SUPIR DiffBody (ours)

Fig. 5. Qualitative comparison on real-world LQ images. DiffBody effectively restores human body details, enhancing real-world LQ images from
64×128 to 512×1024 high-quality (HQ) resolutions.

GT LQ Only LQ+Pose LQ+Pose2U

(ours)

LQ GT LQ Only LQ+Pose LQ+Pose2U

(ours)

LQ

Fig. 6. Visual comparison of the generated normal and depth maps demonstrates that our LQ+Pose2U method achieves results that are most
consistent with the ground truth, closely preserving the structural and geometric details evident in the original maps.
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LQ HQ w/o Pose w/ Pose LQ HQ w/o Pose w/ Pose

LQ HQ w/o Normal w/ Normal LQ HQ w/o Normal w/ Normal

LQ HQ w/o Depth w/ Depth LQ HQ w/o Depth w/ Depth

LQ HQ w/o Color Adapter w/ Color Adapter LQ HQ w/o Color Adapter w/ Color Adapter

Fig. 7. Ablation studies on body priors: (First Row): Ablating the pose: Incorporating the pose leads to improved limb details. (Second Row): Ablating
the normal map. Incorporating the normal map improves human skin textures. (Third Row): Ablating the depth map. Incorporating depth improves
3D spatial relationships in the generated images. (Fourth Row): Ablating in color adapter. Incorporating the color adapter significantly enhances
fidelity and overall visual quality.

based methods, including ours, and presented them to 10
volunteers, who were given two questions: (1) ”Rank the
image quality from best (1st) to worst (4th).” (ranking-based
comparison for best-performing method), and (2) ”Select
the best output from the four diffusion-based methods by
evaluating each one based on its fidelity to the input image,
overall quality, and viewer’s comfort level.” (choice-based
comparison for best-performing method). The results are

shown in Fig. 8. Since GAN artifacts (e.g., poor quality,
lack of detail) differ from diffusion models, we only present
results from four diffusion-based methods for these two
questions. Our method achieved the highest comfort pass
rate (81.25%) and proportion of highest restoring quality
(59.18%), outperforming other models.
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Question 1:

Rank the image quality from best (1st) to worst (4th).

1st2nd3rd4th

Question 2:

Select the best output from the four diffusion-based 

methods by evaluating each one based on its fidelity 

to the input image, overall quality, and viewer's 

comfort level.

Preference

DiffBIR

PASD

SUPIR

DiffBody (ours)

Fig. 8. User study. Questions include the viewer comfort pass test and
image quality ranking. Results clearly demonstrate that our method
significantly outperforms the others.

5 CONCLUSION

DiffBody introduces a novel framework for human body
restoration, achieving realistic results by incorporating hu-
man body priors into the pre-trained Stable Diffusion
model. surpassing the capabilities of existing general image
restoration models in addressing artifacts. A key aspect of
our approach is balancing different priors, such as pose,
depth, and normal maps, to strike a balance between the
viewer comfort and fidelity to the low-quality (LQ) image.
However, there are still areas for improvement, such as ex-
ploring advanced techniques like mesh modeling for precise

body structure reconstruction and ensuring the preservation
of personal identity throughout restoration. Future work
will focus on handling more challenging scenarios, includ-
ing complex poses, multi-human images, and cases where
subjects are partially occluded. These extensions will further
enhance the robustness and applicability of human image
restoration models.

IMPACT STATEMENT

This paper presents work whose goal is to advance the field
of Machine Learning. The ability to restore human images
could lead to unwanted alterations of an individual’s like-
ness, potentially infringing on personal rights. It is essential
that this model is applied responsibly, with explicit consent,
and that strong safeguards are in place to prevent misuse.
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