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Exposure-Limited Image Enhancement with
Generative Diffusion Prior
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Abstract—Many consumer cameras are equipped with 8-bit image sensors, which often struggle to capture scenes with a High
Dynamic Range (HDR). This limitation can result in overexposed or underexposed regions, a loss of fine details due to low bit-depth
compression, skewed color distributions, and noticeable noise in dark areas. Traditional Standard Dynamic Range (SDR) image
enhancement methods typically focus on color mapping by expanding the color range and adjusting brightness. However, they often fail
to restore details in dynamic range extremes, i.e. regions where pixel values approach the minimum or maximum limits. We define
”exposure-limited image enhancement” as the process of enhancing images with large missing areas due to exposure issues within the
SDR space, which differs from existing ”mis-exposed image enhancement” methods primarily aimed at correcting color distributions. To
enhance these exposure-limited images and overcome the limitations of current models, we propose a novel two-stage approach. In
the first stage, we remap color and brightness to a suitable range while preserving existing details. In the second stage, we use a
diffusion prior to generate content in severely overexposed or underexposed regions, which are otherwise lost during capture. Notably,
this generative refinement module can also serve as a plug-and-play component alongside existing enhancement methods. Extensive
experiments demonstrate that our method significantly improves image quality and detail, outperforming state-of-the-art techniques in
dynamic range extremes. The project page is at https://Sagiri0208.github.io.
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1 INTRODUCTION

1 R EAL-WORLD scenes often feature broad dynamic2

ranges, yet many smartphone cameras are equipped3

with 8-bit image sensors with limited dynamic ranges. As a4

result, these sensors cannot simultaneously capture details5

in both the bright sun and shaded leaves. One popular6

strategy for increasing the dynamic range is exposure brack-7

eting [6], which merges multiple low-exposure and high-8

exposure shots into a single high dynamic range (HDR)9

image. However, this approach must be enabled at capture10

time, extends the shooting duration, and requires computa-11

tionally intensive motion compensation.12

Deep neural networks have been developed to restore13

and enhance overexposed and underexposed regions from14

a single image. This is usually done by either reconstruct-15

ing an HDR image [4] followed by a tone mapping step,16

or by directly predicting an enhanced image [1]. How-17

ever, these methods still struggle to consistently deliver a18

truly satisfying visual experience [7], [8]. The challenge is19

particularly pronounced in dynamic range extremes—areas20

where the pixel values are close to minimum or the max-21

imum possible values, as illustrated in Figure 1. Although22
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Convolutional Neural Networks (CNNs) and transformers 23

excel at tone mapping (e.g., low-light enhancement [9] 24

and denoising [10]) in dark regions, they are not capable 25

of reconstructing large areas of content where data is es- 26

sentially lost at capture. Consequently, existing methods 27

often produce blurry, unnatural content in such regions 28

(Figure 1(c)). In this work, we aim to extend the capabilities 29

of exposure-limited image enhancement, which we define as the 30

integration of tone mapping, noise reduction for low light 31

conditions, detail compensation due to low bit-depth, and 32

generating image details obscured or completely lost due to 33

the camera’s restricted dynamic range. 34

Large-scale generative models trained on extensive text- 35

image pairs [11], [12] such as Stable Diffusion [13] excel at 36

synthesizing realistic images and can potentially serve as a 37

powerful tool for generating the details in dynamic range 38

extremes. Motivated by the recent success in leveraging 39

diffusion prior in low-level vision tasks, we propose a 40

two-stage framework tailored to exposure-limited SDR image 41

enhancement. This framework takes an SDR image as input 42

and directly predicts an output SDR image with enhanced 43

color distribution and details. In the first stage, we perform a 44

global adjustment using Latent-SwinIRc (LS), a transformer- 45

based model [14] designed to harmonize color distribu- 46

tions and re-map extremely bright or dark areas into a 47

visually pleasing range1. This is accomplished through a 48

carefully defined color-mapping loss computed over color 49

histograms. 50

In the second stage, the initially color-adjusted image is 51

1. This process is analogous to tone mapping, except that our input
is also an SDR image.
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Fig. 1: (a) Real-world scenarios have broad dynamic ranges. However when captured by normal low bit mobile camera,
the chosen exposure may often face over-saturated bright regions or heavily quantized dark areas with strong noise. (b)
Existing works on mis-exposed/low light image enhancement [1], [2], multi-exposure HDR reconstruction [3] and single-
exposure HDR reconstruction [4], [5] can enhance SDR images with no or small area of missing content, they are not
designed to deal with large dynamic range extreme areas. (c) As a result, such methods often create blurry and unnatural
imagery at dynamic range extremes. In this work, we aim to enhance these exposure-limited situations by analyzing and
decomposing the complex task into the following challenges: (a) color and brightness mapping, (b) denoising of dark areas,
(c) detail enhancement in low bit-depth regions, and (d) content generation for saturated or near-black regions.

refined by our diffusion-based model (named Sagiri). Even52

though the images are mapped to normal color distribution,53

content lost due to exposure limitations remains missing.54

Sagiri utilizes the powerful generative capabilities of pre-55

trained diffusion models with ControlNet [15] to further en-56

hance the partially restored content and synthesizes realistic57

image details in the dynamic range extremes. Trained using58

a carefully crafted synthetic degradation strategy, Sagiri can59

also function as a plug-and-play module to improve results60

from existing SDR image enhancement and HDR recon-61

struction methods. Additionally, we introduce an adaptive62

regional processing technique during sampling, allowing63

users to guide content generation through custom prompts64

such as text or pixel masks. It is important to note that we65

intentionally limit our scope to enhancing SDR images to66

leverage the powerful diffusion models pretrained on SDR67

images. Extending this technique to the HDR domain could68

enable the use of flexible tone-mapping operators, which we69

leave for future work70

Our key contributions are summarized as follows:71

• We present LS-Sagiri, a novel two-stage approach72

for exposure-limited image enhancement. Stage 173

adjusts the overall color and brightness, while Stage 274

refines and generates missing details. 75

• We integrate a powerful generative diffusion based 76

model to generate realistic content in saturated or 77

black regions, while also enhancing fine details in ar- 78

eas affected by low bit-depth. Additionally we adopt 79

a two-step training strategy to make it a plug-and- 80

play module, effectively enhancing existing methods. 81

• Comprehensive experiments demonstrate that our 82

approach delivers superior visual and quantitative 83

performance and can flexibly enhance results from a 84

wide range of existing techniques. 85

2 RELATED WORK 86

In this section, we review related work on similar tasks 87

and highlight their differences from the exposure-limited 88

image enhancement problem we address. Additionally, we 89

discuss image inpainting methods in supplementary mate- 90

rial, which, although relevant, cannot directly substitute for 91

the proposed Sagiri network. 92

2.1 Mis-Exposed and Low Light Image Enhancement 93
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Fig. 2: Method overview. (a) Given a degraded input, the Stage 1 model performs color mapping to adjust the entire image
to a more balanced color distribution. (b) In the Stage 2, the color-adjusted image is concatenated with a random noise
map and sent to the parallel VAE encoder. After a shape-adjusting convolutional layer, the encoded latent feature map
is then sent to the decoder in the denoising U-Net. (c) A default unknown region mask (the region where the pixel has
the maximum or minimum value is selected) is used during training to indicate the dynamic range extremes. (d) During
inference, the users can define their own mask. Note that the input and output of each stage is both SDR image. Please
zoom in on the images to observe the differences.

Mis-Exposed Image Enhancement. Rather than attempting94

to recover or generate HDR images, some research focuses95

on correcting the exposure of single SDR images to produce96

outputs directly within the SDR domain. Wang et al. [1]97

observe that an image’s local color distributions often con-98

tain both overexposed and underexposed areas and propose99

a method to directly enhance these regions within the LDR100

domain. Li et al. [16] further notice that these error exposed101

regions display opposite color tone distribution shifts and102

further propose a model to handle the shift. These methods103

are functionally similar to our first-stage model Latent-104

SwinIRc and do not have strong generative capabilities to105

fill in the missing details in dynamic range extremes.106

Low Light Image Enhancement. Low light image enhance-107

ment is another related task that focuses on color map-108

ping and noise reduction for low-light images within the109

SDR domain. Early methods like [17], [18] face limitations110

when addressing complex real-world scenarios, which later111

proposed deep learning methods have improved upon.112

LLNet [2] utilizes a deep autoencoder to transform un-113

derexposed images into enhanced versions, simultaneously114

reducing noise and increasing brightness. Retinex-Net [19]115

builds on the classical Retinex theory by decomposing im-116

ages into reflectance and illumination components, allowing117

for targeted brightness adjustment and effective denoising.118

More advanced CNN and Transformer-based methods, such119

as [20], [21], [22], [23] and generative methods include [24],120

[25] have been proposed recently. However, these methods121

lack the capability to generate content in large blank regions122

and are not designed to address overexposure, thus they are123

not included in our comparison.124

2.2 Single Image HDR Reconstruction 125

Non-Generative Methods. As the reconstruction of HDR im- 126

ages from a single input primarily involves color mapping 127

and pixel value prediction without large exposure-limited 128

region, many methods approach this task as a restoration 129

problem without employing generative networks. Among 130

these, SingleHDR [4] inverts the SDR image formation 131

pipeline to recover HDR information. However, pipeline- 132

based methods can lead to error accumulation at each inter- 133

mediate step. HDRUNet [5] learns an end-to-end mapping 134

for single-image HDR reconstruction, featuring denoising 135

and dequantization. RawHDR [7] targets raw images by 136

learning exposure masks to address challenging high dy- 137

namic range regions. Le et. al explores another direction 138

by reconstructing images through multi-exposure genera- 139

tion [26], predicting images at various exposure levels from 140

the input image and subsequently fusing them using stan- 141

dard HDR merging strategies. Other representative methods 142

include [27], [28], [29], [30]. Although these methods have 143

advanced HDR image reconstruction, their primary focus is 144

not on addressing large exposed regions, resulting in weaker 145

performance when applied to our specific task. 146

Generative Methods. Recent generative models offer new 147

possibilities for HDR reconstruction. Fei et al. [31] in- 148

troduce a diffusion-based framework for unsupervised 149

restoration and enhancement, utilizing hierarchical guid- 150

ance and patch-level operations to produce high-quality 151

results. However, it requires multiple LDR inputs and in- 152

volves a lengthy inference process. GlowGAN [8] uses a 153

generative adversarial network to learn HDR content from 154

in-the-wild LDR images without explicit supervision but 155
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struggles with large overexposed regions. In contrast, our156

second-stage Sagiri model leverages a diffusion prior to157

effectively address this challenge.158

3 METHOD159

Our method aims to restore and enhance exposure-limited160

images using a two-stage framework. In the first stage, we161

employ a restoration model to adjust brightness and color162

distributions, yielding an image whose color statistics more163

closely resemble ground truth (GT) data. However, this164

restoration model alone has limited generative capacity and165

struggles to reconstruct details lost in dynamic range extremes.166

To address this, we introduce a second-stage model that167

leverages a diffusion prior to generate and refine missing168

or severely degraded regions.169

Specialized Loss Functions. To effectively guide the learn-170

ing process at each stage, we design distinct loss func-171

tions suited to each model’s strengths. In Stage 1, our172

color reconstruction loss prioritizes brightness adjustment and173

color alignment by matching the predicted image’s color174

histogram to that of the target image. In Stage 2, we define a175

content enhancement loss focused on generating high-fidelity176

textures and shifting the content distribution closer to that177

of detail-rich references. This encourages the model to syn-178

thesize missing details effectively.179

3.1 Color Mapping180

Our first-stage model is based on SwinIR [14] but with mod-181

ified pre- and post-processing. Specifically, we apply a pixel182

unshuffle operation to downsample the original low-quality183

input by a factor of 8. Subsequently, a 3 × 3 convolutional184

layer extracts shallow features in color space. These features185

pass through Residual Swin Transformer Blocks (RSTB)186

for processing. Nearest-neighbor upsampling and another187

3 × 3 convolutional layer are then repeated three times to188

return the features to the original resolution. We refer to189

this modified model as Latent-SwinIRc (seen in top left of190

the Figure 2), which focuses on global color and brightness191

adjustment while offering preliminary content recovery. The192

core processing is performed in a downsampled latent space193

to reduce the computational cost, as the network must take194

the entire image as input rather than tiles to capture the195

color distribution accurately. To improve color mapping196

and brightness adjustment, we introduce the following loss197

function:198

Lcolor = λ1Lmse + λ2Lcd + λ3Lfdp, (1)

where Lmse, Lcd, and Lfdp are the MSE, Color Distribution,199

and Frequency Domain Preservation losses, respectively.200

The coefficients λ1, λ2, and λ3 balance each component.201

Further details are provided in the supplementary material.202

3.2 Conditional Generation203

After the first stage, the restored image may still contain204

regions of poor visual quality, particularly in dynamic range205

extremes. Traditional methods often struggle to synthesize206

high-fidelity details in these areas [1], [7]. We harness the207

generative power of a pretrained diffusion model to over-208

come this limitation (Figure 2).209

First, we encode the Stage 1 output via a Variational 210

Autoencoder (VAE) [32] to obtain a latent representation. 211

This latent is then combined with noise and fed into a paral- 212

lel encoder module, which mirrors the encoder architecture 213

in the U-Net denoiser. The outputs from different encoder 214

blocks serve as latent controls, concatenated with the U- 215

Net’s decoder features. Newly introduced parameters are 216

initialized to zero, while the pretrained denoising U-Net 217

remains frozen except for 1 × 1 convolutional layers added 218

before each concatenation. 219

During training, we mark the pixels that exceed the 220

dynamic range (which will has value of 0 or reach the max- 221

imum in a SDR image) as “unknown” regions (See Figure 2 222

(c)). To ensure that the detail generation is focused to the 223

unknown regions while being semantically and aesthetically 224

harmonious with the known regions, at the t-th step, the 225

known regions are preserved by directly diffusing the initial 226

latent feature, while the unknown regions are inferred from 227

the model’s denoised output [33]: 228

xknown
t−1 ∼ N

(√
αt x0, (1− αt)I

)
, (2)

xunknown
t−1 ∼ N

(
µθ(xt, t), Σθ(xt, t)

)
, (3)

xt−1 = mlatent ⊙ xknown
t−1 + (1−mlatent)⊙ xunknown

t−1 , (4)

where the known pixels xknown
t−1 are directly diffused from 229

x0, and the unknown pixels xunknown
t−1 are sampled from the 230

diffusion model, blended by a mask mlatent. After t steps, 231

the final denoised latent is decoded by the LDM decoder. 232

To guide Sagiri toward realistic content generation, we 233

introduce the following loss: 234

Lcontent = λ4Lmse + λ5Lssim + λ6Lfdp, (5)

where Lmse, Lssim, and Lfdp ensure structural fidelity, 235

realistic textures, and frequency consistency. Coefficients 236

λ4, λ5, λ6 balance these terms. Details are provided in the 237

supplementary material. 238

3.3 Training Strategy 239

Overall Pipeline. We train Latent-SwinIRc on the HDR- 240

Real dataset [4] to learn appropriate color and brightness 241

mappings. For Sagiri, we first pretrain it on the large-scale 242

Places365 dataset [34] to expand its capability of generating 243

diverse scenes, and then finetune it on HDR-Real. 244

Degradation Generation in Pre-training. To bridge the do- 245

main gap, we simulate Latent-SwinIRc outputs during Sa- 246

giri’s pre-training on Places365 by crafting various realistic 247

degradation patterns. Specifically, we generate a “degrada- 248

tion mask” using random lines of varied thickness, followed 249

by dilation and Gaussian blurring. This mask is used to 250

blend the original image with a heavily blurred version, pro- 251

ducing blur-like artifacts mimicking over- or underexposed 252

areas. This approach improves Sagiri’s ability to serve as a 253

plug-and-play module not only for Latent-SwinIRc but also 254

for other methods we compare with (Figure 4). 255

Unknown Region Mask. During Sagiri’s pre-training, we 256

do not apply the unknown region mask; the model is en- 257

couraged to autonomously identify and handle low-quality 258

areas. During finetuning, however, we apply the binary 259

mask to emphasize the unique challenge of inpainting over- 260

/under-exposed regions. 261
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LQ SingleHDR LCDP-Net HDRUNet Glow-GAN LS-Sagiri Reference

Fig. 3: Performance of LS-Sagiri. Previous restoration-based methods can only restore exposure-limited areas to blurry content.
Although Glow-GAN [8] is a generative method, it fails to handle large overexposed regions, often rendering them black. In
contrast, our method can generate realistic content based on existing information and specified mask areas.

Fig. 4: The first row is the result obtained using our degrada-
tion strategy, while the second row is the reference images.
We aim to simulate the degradation caused by other models
in dynamic range extremes during SDR enhancement and
train Sagiri to handle these situations effectively.

4 EXPERIMENTS262

4.1 Training and Inference Settings263

Training. We train Latent-SwinIRc on the HDR-Real training264

set [4] for 150,000 iterations using a batch size of 16. Our265

Sagiri model is initialized from pretrained Stable Diffusion266

v2.1. We first pretrain Sagiri on 250,000 randomly selected267

images from the Places365 dataset [34] for 70,000 steps, then268

fine-tune it on the HDR-Real training set for an additional269

20,000 steps. All training stages use the Adam optimizer [35]270

with a learning rate of 1×10−4, conducted on four NVIDIA271

A100 GPUs. The loss coefficients λ1, λ2, λ3, λ4, λ5, and λ6272

are set to 10, 1, 0.1, 1, 1, and 0.01, respectively. The total273

training process takes 3 days using 4 NVIDIA A100 GPUs.274

Inference. During inference, our model processes an SDR275

input image, applying an unknown region mask that detects276

pixels with values of 0 or 255. We use just 30 steps of DDPM277

sampling [36]. Note that all the visualizations are from the278

test set or real-world examples.279

Datasets. We evaluate performance on HDR-Real [4],280

NTIRE [37], HDR-Eye [38], Eye-over, and Eye-under. The281

latter two are constructed by uniformly adjusting the expo-282

sure values of HDR-Eye to create overexposed or underex-283

posed images. Since existing datasets lack a large number of284

test images with severe content loss, these newly created285

sets better assess our method’s effectiveness in extreme286

conditions.287

Prompt Usage in Training and Inference. We employ 288

CogVLM [39] to summarize input images into prompts. 289

During Sagiri’s fine-tuning on HDR-Real, these prompts are 290

generated using the ground-truth images to align the model 291

with prompt inputs. For inference on the HDR-Real testing 292

set [4], prompts are produced from low-quality inputs. For 293

the HDR-Eye [38], Eye-over, Eye-under, and NTIRE [37] 294

datasets, we do not provide prompts. This design aims to 295

evaluate Sagiri’s adaptability under different scenarios. 296

4.2 Results 297

Baseline Methods. We compare our approach with Single- 298

HDR [4], LCDPNet [1], HDRUNet [5], and GlowGAN [8]. 299

For fairness, we uniformly apply the Reinhard tone map- 300

ping function [40] across the training and testing sets to 301

generated pairs of SDR images for training and evaluating 302

SDR methods (LCDPNet and ours), and as a common post- 303

processing step for evaluating HDR methods (SingleHDR, 304

HDRUNet and GlowGAN). Additional comparisons with 305

GDP [31] are provided in the supplementary material. 306

Metrics. To assess both our complete LS-Sagiri pipeline 307

and the generalizability of Sagiri as a refinement module 308

for other models, we rely on no-reference metrics such 309

as BRISQUE [41], NIQE [42], MANIQA [43], and CLIP- 310

IQA [44], which focus on visual quality. We do not use 311

PSNR, SSIM [45], or LPIPS [46] because prior studies [37], 312

[47], [48] have shown that these metrics can be unreliable 313

for generative models and this challenging generative task. 314

Performance of Latent-SwinIRc. Figures 7(a–f) demonstrate 315

the ability of Latent-SwinIRc to correct image color distri- 316

butions. Rows 1–3 show LQ images captured in extremely 317

dark conditions, a challenging scenario for image enhance- 318

ment. SingleHDR reveals more details yet suffers from low 319

contrast. LCDP-Net and HDRUNet fail to adequately adjust 320

the brightness, leaving the result underexposed. GlowGAN 321

struggles to restore quantized details, leading to images 322

lacking essential textures. Thanks to our novel loss formula- 323

tion, Latent-SwinIRc achieves superior brightness and color 324

mapping without compromising detail, delivering high- 325

quality, natural-looking images. 326
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TABLE 1: Quantitative results on HDR-Real [4], NTIRE [37], HDR-Eye [38], Eye-over and Eye-under datasets. The latter two
datasets are made by uniformly adjusting the exposure value of HDR-Eye dataset to synthesize datasets with large areas
at dynamic range extremes. In addition to comparing the performance of our pipeline with existing methods, we plugged
Sagiri into each model to see performance improvements. The results show that (1) Sagiri enhances the performance of
each method, and (2) LS-Sagiri achieves the best overall results.

Datasets HDR-Real NTIRE

Metrics BRISQUE↓ NIQE↓ MANIQA↑ CLIP-IQA↑ BRISQUE↓ NIQE↓ MANIQA↑ CLIP-IQA↑

SingleHDR [4] 23.597 20.839 0.367 0.387 22.730 21.399 0.250 0.411
SingleHDR+Sagiri 19.855 20.326 0.556 0.649 10.211 21.622 0.385 0.676

LCDPNet [1] 30.704 20.660 0.344 0.383 19.237 20.978 0.267 0.415
LCDPNet+Sagiri 24.464 20.318 0.542 0.641 9.951 21.622 0.385 0.674

HDRUNet [5] 41.521 21.388 0.341 0.361 52.898 22.752 0.229 0.377
HDRUNet+Sagiri 24.935 20.704 0.503 0.609 21.353 21.749 0.397 0.650

GlowGAN [8] 36.727 21.774 0.470 0.503 21.769 24.053 0.403 0.478
GlowGAN+Sagiri 22.840 21.602 0.443 0.554 15.549 24.078 0.354 0.511

Latent-SwinIRc 35.407 21.457 0.291 0.303 31.298 22.000 0.224 0.392
LS-Sagiri 19.725 20.309 0.569 0.670 9.724 21.652 0.395 0.671

Datasets HDR-Eye Eye-over Eye-under

Metrics BRISQUE↓ MANIQA↑ CLIP-IQA↑ BRISQUE↓ MANIQA↑ CLIP-IQA↑ BRISQUE↓ MANIQA↑ CLIP-IQA↑

SingleHDR [4] 18.338 0.452 0.466 20.573 0.447 0.428 33.675 0.244 0.244
SingleHDR+Sagiri 15.092 0.570 0.697 14.969 0.557 0.676 13.477 0.339 0.523

LCDPNet [1] 20.672 0.453 0.475 26.374 0.398 0.365 54.493 0.311 0.335
LCDPNet+Sagiri 14.137 0.543 0.665 14.973 0.478 0.638 37.825 0.382 0.552

HDRUNet [5] 27.672 0.418 0.390 24.545 0.454 0.410 72.920 0.364 0.403
HDRUNet+Sagiri 14.846 0.555 0.662 15.905 0.560 0.668 40.954 0.460 0.610

GlowGAN [8] 16.042 0.506 0.536 16.930 0.503 0.561 46.667 0.356 0.483
GlowGAN+Sagiri 19.775 0.430 0.473 20.040 0.401 0.466 37.745 0.286 0.432

Latent-SwinIRc 25.870 0.329 0.286 25.345 0.321 0.286 45.168 0.256 0.252
LS-Sagiri 14.777 0.538 0.675 14.667 0.535 0.669 12.066 0.462 0.660

In Rows 4–8, five images with decreasing exposure times327

are tested. As the exposure decreases, existing methods328

exhibit fading contrast (SingleHDR), dull brightness (LCDP-329

Net and HDRUNet), or further detail loss (GlowGAN). In330

contrast, Latent-SwinIRc consistently preserves robust color331

and brightness distributions, demonstrating remarkable ro-332

bustness to varying exposure levels.333

Performance of LS-Sagiri. Figures 7(g) and 3 present the334

performance of the complete LS-Sagiri pipeline. Despite335

the overall robust performance of Latent-SwinIRc, it is no-336

table that the results still contain certain degradations, such337

as blurry areas in exposure-limited regions, as illustrated338

in Figure 7. In Figure 7(g), Sagiri clearly refines Latent-339

SwinIRc’s outputs by synthesizing realistic details, notably340

improving the perceived image quality. Figure 3 features341

inputs with large overexposed regions, where SingleHDR342

introduces blurry areas, LCDP-Net and HDRUNet fail to343

regulate brightness, and GlowGAN cannot recover heavily344

quantized details. Only LS-Sagiri succeeds in filling over-345

saturated regions with coherent, realistic details. Table 1346

shows that LS-Sagiri achieves the top performance across347

nearly all metrics, confirming its efficacy in enhancing LDR348

images and its broad applicability to various datasets.349

We note that Latent-SwinIRc alone does not always yield350

top metric scores. This may stem from the limitations of no-351

reference image quality metrics, which do not thoroughly352

account for global brightness distribution. Future research353

is needed to explore more comprehensive metrics to better 354

evaluate such enhancements. 355

Sagiri as a Plug-and-Play Module. Beyond refining Latent- 356

SwinIRc outputs, Sagiri can seamlessly integrate with other 357

models. Figure 8 shows how Sagiri corrects dynamic range 358

extremes even when the initial enhanced images vary 359

significantly in quality, ultimately improving the overall 360

perceptual quality. Table 1 supports this versatility: Sagiri 361

significantly boosts nearly every baseline’s output. Minor 362

exceptions (e.g., GlowGAN) are detailed in the supplemen- 363

tary material. 364

Further evaluations. A user study on the subjective quality 365

of the methods and a comparison with inpainting methods 366

can be found in the supplementary material. 367

4.3 Ablation Studies 368

Importance of the Two-Stage Model. To verify whether our 369

two-stage pipeline is essential, we tested Sagiri alone for 370

both color restoration and detail enhancement. As shown in 371

Figure 5 (Top), Sagiri alone struggles with color restoration 372

and brightness adjustment, demonstrating the necessity of 373

Latent-SwinIRc as the first stage. 374

Effect of Pre-training and Prompts. Figure 5 (Middle) 375

shows that our pre-training approach and prompt-guided 376

generation significantly improve visual quality, while the 377

content reconstruction loss (ConRLoss) further enhances 378

structural integrity. In addition, Figure 5 (Bottom) illustrates 379

how users can control (1) the region to be generated by 380
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LQ Sagiri LS-Sagiri LQ Sagiri LS-Sagiri

LQ Latent-SwinIRc w/o pretrain w/o prompt w/o ConRLoss LS-Sagiri

SingleHDR +Sagiri (Prompt a) +Sagiri (Prompt b) SingleHDR +Sagiri (Prompt a) +Sagiri (Prompt b)

Fig. 5: Ablation studies. (Top) We enforce Sagiri to learn both color distribution correction and details generation, which leads
to weak color mapping capabilities. (Middle) Ablation of pretraining, text prompt and content reconstruction loss. Prompts
generated by CogVLM [39]: “A white waterfall is flowing down from the cliff, surrounded by rocks and trees.” (Bottom) We use
different user-defined unknown region mask and different prompts on Sagiri to refine SingleHDR’s [4] results. Left: We manually
select the red box. Right: We select the entire image. Prompt a: “The sky is filled with clouds.” Prompt b: “The sun is setting, and
the sky is filled with clouds.” Please zoom in to see more details.

LQ LatentSwinIRc LS-Sagiri (Prompt a) LS-Sagiri (Prompt b)

LQ LatentSwinIRc LS-Sagiri (Prompt c) LS-Sagiri (Prompt d)

Fig. 6: Use different prompts to control the generated results. Prompt a: “A building with a red brick exterior, white columns, and
a black door...” Prompt b: “A building with a black brick exterior, white columns, and a red door...”. Furthermore, The model has
poor responsiveness to prompts that do not fit the current context, as we found. Prompt c: “The sun is setting in the forest, and
the trees are black.” Prompt d: “The moon is setting in the forest, and the trees are green”. Please zoom in to see more details.

customizing the unknown-region mask, and (2) the content381

to be generated by supplying a user-defined text prompt.382

More results featuring prompt-guided generation in ex-383

treme regions are shown in Figure 6.384

5 CONCLUSION385

We propose a novel pipeline for exposure-limited image386

enhancement, anchored by our robust and flexible Sagiri387

model. The pipeline comprises two stages: Stage 1 (Latent-388

SwinIRc, LS) rectifies brightness and color distributions,389

while Stage 2 (Sagiri) synthesizes content in missing or390

severely degraded regions and refines overall details. By391

design, Sagiri is also compatible as a plug-and-play module,392

allowing it to enhance outputs from diverse restoration393

methods. Our experiments confirm the superior perfor-394

mance of the two-stage LS-Sagiri framework and demon- 395

strate Sagiri’s remarkable ability to generate realistic details. 396

Besides, please note that given the challenging task, 397

which is open end, and the generative character of stable 398

diffusion based method, our approach is mainly designed 399

for beautify the given input, not to restrictly following 400

the reference image. Currently, Sagiri produces only SDR 401

images due to limitations of the Stable Diffusion on which 402

it is built. A promising future direction is to extend Sagiri to 403

generate HDR outputs, thus giving users greater flexibility 404

in applying customized tone mapping. 405
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(a) LQ (b) SingleHDR (c) LCDP-Net (d) HDRUNet (e) Glow-GAN (f) Latent-SwinIRc (g) LS-Sagiri

Fig. 7: (a-f) Performance of Latent-SwinIRc (LS). Existing methods often struggle to recover content in regions with extreme
dynamic range. In contrast, Latent-SwinIRc, thanks to its uniquely designed loss function, captures a more balanced color
distribution. This is evident in the Row 1–3. Moreover, in Row 4–8, where the input low-quality (LQ) images in column (a) exhibit a
gradual decrease in exposure, columns (b-f) show that the performance of existing methods deteriorates with decreasing exposure.
Although SingleHDR provides results closest to our method, it still produces low-contrast “hazy” outputs at low exposures. In (f),
LS demonstrates robust preservation of color and brightness despite the decreasing exposure levels. Additionally, (g) highlights
the Sagiri model’s excellence in generating detailed content across large regions, thereby enhancing the overall quality. Please
Zoom in the figures for details.



B. LI ET AL., EXPOSURE-LIMITED IMAGE ENHANCEMENT WITH GENERATIVE DIFFUSION PRIOR, ICCP 2025 9

LQ SingleHDR LCDPNet HDRUNet GlowGAN Latent-SwinIRc (LS)

Reference SingleHDR+Sagiri LCDPNet+Sagiri HDRUNet+Sagiri GlowGAN+Sagiri LS+Sagiri (Ours)

LQ SingleHDR LCDPNet HDRUNet GlowGAN Latent-SwinIRc (LS)

Reference SingleHDR+Sagiri LCDPNet+Sagiri HDRUNet+Sagiri GlowGAN+Sagiri LS+Sagiri (Ours)

LQ SingleHDR LCDPNet HDRUNet GlowGAN Latent-SwinIRc (LS)

Reference SingleHDR+Sagiri LCDPNet+Sagiri HDRUNet+Sagiri GlowGAN+Sagiri LS+Sagiri (Ours)

Fig. 8: Sagiri as a plug-and-play module. Although the images generated by the baselines significantly differ from each other,
Sagiri shows strong versatility and improves the visual quality of almost all of them. Additionally, the combination of LS-Sagiri
surpasses the performance of other models integrated with Sagiri, confirming the robustness and adaptability of our framework.



B. LI ET AL., EXPOSURE-LIMITED IMAGE ENHANCEMENT WITH GENERATIVE DIFFUSION PRIOR, ICCP 2025 10

REFERENCES406

[1] H. Wang, K. Xu, and R. W. Lau, “Local color distributions prior407

for image enhancement,” in ECCV, 2022.408

[2] K. G. Lore, A. Akintayo, and S. Sarkar, “Llnet: A deep autoen-409

coder approach to natural low-light image enhancement,” Pattern410

Recognition, vol. 61, pp. 650–662, 2017.411

[3] Z. Liu, Y. Wang, B. Zeng, and S. Liu, “Ghost-free high dynamic412

range imaging with context-aware transformer,” in ECCV, 2022.413

[4] Y.-L. Liu, W.-S. Lai, Y.-S. Chen, Y.-L. Kao, M.-H. Yang, Y.-Y.414

Chuang, and J.-B. Huang, “Single-image hdr reconstruction by415

learning to reverse the camera pipeline,” in CVPR, 2020.416

[5] X. Chen, Y. Liu, Z. Zhang, Y. Qiao, and C. Dong, “Hdrunet: Single417

image hdr reconstruction with denoising and dequantization,” in418

CVPR, 2021.419

[6] P. E. Debevec and J. Malik, “Recovering high dynamic range420

radiance maps from photographs,” in SIGGRAPH, 1997.421

[7] Y. Zou, C. Yan, and Y. Fu, “Rawhdr: High dynamic range image422

reconstruction from a single raw image,” in ICCV, 2023.423

[8] C. Wang, A. Serrano, X. Pan, B. Chen, K. Myszkowski, H.-P. Seidel,424

C. Theobalt, and T. Leimkühler, “Glowgan: Unsupervised learning425

of hdr images from ldr images in the wild,” in ICCV, 2023.426

[9] C. Li, C. Guo, L. Han, J. Jiang, M.-M. Cheng, J. Gu, and C. C. Loy,427

“Low-light image and video enhancement using deep learning:428

A survey,” IEEE transactions on pattern analysis and machine intelli-429

gence, 2021.430

[10] S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, and M.-H.431

Yang, “Restormer: Efficient transformer for high-resolution image432

restoration,” in Proceedings of the IEEE/CVF conference on computer433

vision and pattern recognition, 2022, pp. 5728–5739.434

[11] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic435

models,” NeurIPS, 2020.436

[12] J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit437

models,” in ICLR, 2021.438

[13] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,439

“High-resolution image synthesis with latent diffusion models,”440

in CVPR, 2022.441

[14] J. Liang, J. Cao, G. Sun, K. Zhang, L. Van Gool, and R. Timofte,442

“Swinir: Image restoration using swin transformer,” in ICCV, 2021.443

[15] L. Zhang, A. Rao, and M. Agrawala, “Adding conditional control444

to text-to-image diffusion models,” in ICCV, 2023.445

[16] Y. Li, K. Xu, G. P. Hancke, and R. W. Lau, “Color shift estimation-446

and-correction for image enhancement,” in Proceedings of the447

IEEE/CVF Conference on Computer Vision and Pattern Recognition,448

2024, pp. 25 389–25 398.449

[17] D. J. Jobson, Z.-u. Rahman, and G. A. Woodell, “Properties and450

performance of a center/surround retinex,” IEEE transactions on451

image processing, vol. 6, no. 3, pp. 451–462, 1997.452

[18] S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie,453

A. Geselowitz, T. Greer, B. ter Haar Romeny, J. B. Zimmerman,454

and K. Zuiderveld, “Adaptive histogram equalization and its455

variations,” Computer vision, graphics, and image processing, vol. 39,456

no. 3, pp. 355–368, 1987.457

[19] C. Wei, W. Wang, W. Yang, and J. Liu, “Deep retinex decomposi-458

tion for low-light enhancement,” arXiv preprint arXiv:1808.04560,459

2018.460

[20] C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong,461

“Zero-reference deep curve estimation for low-light image en-462

hancement,” in Proceedings of the IEEE/CVF conference on computer463

vision and pattern recognition, 2020, pp. 1780–1789.464

[21] L. Ma, T. Ma, R. Liu, X. Fan, and Z. Luo, “Toward fast, flexible,465

and robust low-light image enhancement,” in Proceedings of the466

IEEE/CVF conference on computer vision and pattern recognition, 2022,467

pp. 5637–5646.468

[22] X. Xu, R. Wang, C.-W. Fu, and J. Jia, “Snr-aware low-light image469

enhancement,” in Proceedings of the IEEE/CVF conference on com-470

puter vision and pattern recognition, 2022, pp. 17 714–17 724.471

[23] B. Li, H. Zheng, Z. Zhang, Y. Zhao, Z. Zhao, and H. Zhang,472

“Dynamic grouped interaction network for low-light stereo image473

enhancement,” in Proceedings of the 31st ACM International Confer-474

ence on Multimedia, 2023, pp. 2468–2476.475

[24] G. Kim, D. Kwon, and J. Kwon, “Low-lightgan: Low-light en-476

hancement via advanced generative adversarial network with477

task-driven training,” in 2019 IEEE International conference on image478

processing (ICIP). IEEE, 2019, pp. 2811–2815.479

[25] X. Yi, H. Xu, H. Zhang, L. Tang, and J. Ma, “Diff-retinex: Re-480

thinking low-light image enhancement with a generative diffusion481

model,” in Proceedings of the IEEE/CVF International Conference on 482

Computer Vision, 2023, pp. 12 302–12 311. 483

[26] P.-H. Le, Q. Le, R. Nguyen, and B.-S. Hua, “Single-image hdr 484

reconstruction by multi-exposure generation,” in WACV, 2023. 485

[27] J. Cai, S. Gu, and L. Zhang, “Learning a deep single image contrast 486

enhancer from multi-exposure images,” IEEE Transactions on Image 487

Processing, vol. 27, no. 4, pp. 2049–2062, 2018. 488

[28] Y. Endo, Y. Kanamori, and J. Mitani, “Deep reverse tone mapping,” 489

ACM Transactions on Graphics (Proc. of SIGGRAPH ASIA 2017), 490

vol. 36, no. 6, Nov. 2017. 491

[29] G. Eilertsen, J. Kronander, G. Denes, R. K. Mantiuk, and J. Unger, 492

“Hdr image reconstruction from a single exposure using deep 493

cnns,” ACM transactions on graphics (TOG), vol. 36, no. 6, pp. 1– 494

15, 2017. 495

[30] M. S. Santos, R. Tsang, and N. Khademi Kalantari, “Single image 496

hdr reconstruction using a cnn with masked features and percep- 497

tual loss,” ACM Transactions on Graphics, vol. 39, no. 4, 7 2020. 498

[31] B. Fei, Z. Lyu, L. Pan, J. Zhang, W. Yang, T. Luo, B. Zhang, and 499

B. Dai, “Generative diffusion prior for unified image restoration 500

and enhancement,” in CVPR, 2023. 501

[32] D. P. Kingma, M. Welling et al., “An introduction to variational 502

autoencoders,” Foundations and Trends® in Machine Learning, 2019. 503

[33] A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and 504

L. Van Gool, “Repaint: Inpainting using denoising diffusion prob- 505

abilistic models,” in CVPR, 2022. 506

[34] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, 507

“Places: A 10 million image database for scene recognition,” IEEE 508

TPAMI, 2017. 509

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza- 510

tion,” arXiv preprint arXiv:1412.6980, 2014. 511

[36] A. Q. Nichol and P. Dhariwal, “Improved denoising diffusion 512

probabilistic models,” in ICML, 2021. 513

[37] J. Gu, H. Cai, C. Dong, J. S. Ren, R. Timofte, Y. Gong, S. Lao, S. Shi, 514

J. Wang, S. Yang et al., “Ntire 2022 challenge on perceptual image 515

quality assessment,” in CVPR, 2022. 516

[38] H. Nemoto, P. Korshunov, P. Hanhart, and T. Ebrahimi, “Visual 517

attention in ldr and hdr images,” in 9th International Workshop 518

on Video Processing and Quality Metrics for Consumer Electronics 519

(VPQM), 2015. 520

[39] W. Wang, Q. Lv, W. Yu, W. Hong, J. Qi, Y. Wang, J. Ji, Z. Yang, 521

L. Zhao, X. Song et al., “Cogvlm: Visual expert for pretrained 522

language models,” arXiv preprint arXiv:2311.03079, 2023. 523

[40] E. Reinhard and K. Devlin, “Dynamic range reduction inspired by 524

photoreceptor physiology,” IEEE transactions on visualization and 525

computer graphics, vol. 11, no. 1, pp. 13–24, 2005. 526

[41] A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image 527

quality assessment in the spatial domain,” IEEE TIP, 2012. 528

[42] A. Mittal, R. Soundararajan, and A. C. Bovik, “Making a “com- 529

pletely blind” image quality analyzer,” IEEE Signal processing 530

letters, 2012. 531

[43] S. Yang, T. Wu, S. Shi, S. Lao, Y. Gong, M. Cao, J. Wang, and 532

Y. Yang, “Maniqa: Multi-dimension attention network for no- 533

reference image quality assessment,” in CVPR, 2022. 534

[44] J. Wang, K. C. Chan, and C. C. Loy, “Exploring clip for assessing 535

the look and feel of images,” in AAAI, 2023. 536

[45] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image 537

quality assessment: from error visibility to structural similarity,” 538

IEEE TIP, 2004. 539

[46] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, 540

“The unreasonable effectiveness of deep features as a perceptual 541

metric,” in CVPR, 2018. 542

[47] G. Jinjin, C. Haoming, C. Haoyu, Y. Xiaoxing, J. S. Ren, and 543

D. Chao, “Pipal: a large-scale image quality assessment dataset 544

for perceptual image restoration,” in ECCV, 2020. 545

[48] Y. Blau and T. Michaeli, “The perception-distortion tradeoff,” in 546

CVPR, 2018. 547


