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Abstract

The supplementary material provides implementation
details, limitation analysis, qualitative results and future
work. In summary, we include
o Appendix A. Implementation details and model architec-

ture of the interactive pose animator and generator.

* Appendix B. Limitation analysis of our current approach.
* Appendix C. Additional qualitative results of long in-
teractive motion generation, complex interaction syn-

thesis, two-person image animation, single-person im-

age interaction generation, interactive pose animation,

text-to-interaction motion synthesis, and single-pose-to-
interaction motion synthesis.

* Appendix D. Future direction and potential applications
of our work.

A. Implementation details

Interactive pose extraction. Given a two-person pose
from a motion sequence, we determine close contact by
measuring the minimum distance between their SMPL-X
meshe vertices. Following [14], we downsample the mesh
based on predefined contact regions and compute pairwise
distances. If the smallest distance is below 1.3cm, we clas-
sify the pose as a proximity pose—indicating contact be-
tween the individuals. This interactive pose is then used to
train human interaction dynamics.

Model architecture. Our pose animator and pose gen-
erator follow the DiT architecture [16], which consists
of stacked Transformer blocks [21], each incorporat-
ing an attention mechanism and a feed-forward network
(FFN). Both the animator and generator comprise 8 Trans-
former layers, with the animator utilizing both spatial-
and temporal-attention blocks, while the generator employs
only spatial attention. The model has a latent dimension of
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1024, with 8-head multi-head attention, and uses the GELU
activation function. The input motions are first encoded
with positional encoding before being processed by Trans-
former blocks. The input has the shape (B, P, N, D), where
B is batch size, P = 2 represents the number of individu-
als, and IV corresponds to number of frames, and D is the
dimension of diffusion target zy. Spatial attention operates
along the P-dimension to model interactions between indi-
viduals, while temporal attention captures motion dynamics
along the T-dimension. The model’s output layer is a linear
MLP, initialized with zero weights, which generates resid-
ual motion outputs. These residual motions are added to
the interactive pose to produce the final output. Conditional
information is incorporated into the model using Adaptive
Instance Normalization [9].

Training. We apply training data augmentation to inter-
active poses in the interactive pose animator by adding ran-
dom noise with a scale of 0.02 to account for real-world
inaccuracies in pose estimation. This ensures that even if
the interactive pose estimator introduces noise, the anima-
tor can still produce reasonable results. This augmenta-
tion is performed online during training. Following prior
work [5, 11], we align one person’s pose in the interac-
tive pose to face the positive Z direction and center it at
the origin. The interaction loss in the pose animator fol-
lows [11] and consists of a **contact loss**, which encour-
ages contact between two individuals when their joints are
close, and a **relative orientation loss**, which aligns their
global orientations with the ground truth. The velocity loss
L1, following MDM [20], ensures motion coherence by
minimizing the velocity difference between the generated
motion and the ground truth. For diffusion training, we
use a cosine scheduler with 1000 diffusion steps and DDIM
sampling [18] for 50 steps during inference. The model is
trained with a learning rate of le-4 and weight decay of
0.00002 for 4000 epochs. The batch size is 256 for the
interactive pose animator and 512 for the interactive pose
generator. Training takes 2 days for the pose animator and
1 day for the pose generator on 4xA100 GPUs.
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Figure 1. Method limitation analysis. The first two rows show in-the-wild interactive pose animation results. In the first sample, severe
interpenetration occurs as our method does not explicitly model penetration between two individuals. In the second, the generated motion
is physically implausible due to the lack of scene context awareness, leading to collisions with the environment. The bottom two rows
illustrate interaction motion generation from a single pose input. Due to inaccuracies in interactive pose generation, our method fails to

produce realistic contact, resulting in unnatural motion.

Inference speed comparison. Our interactive pose gen-
eration takes 0.21s on a single A100 on average, the inter-
active pose animator generates 3s motion at 10fps in 0.24s,
comparable to InterGen [11] which requires 0.76s for the
same motion length.

B. Limitation Analysis

Our method has the limitations below. The common failure
modes are illustrated in Fig. 1.

Short motion modeling. Our method is mainly focus on
short interactive motion segments. While our framework
could support longer generation by interactive pose chain-
ing as shown in Fig. 2, the benefit of interactive pose prior
would diminish over time. In text-to-interaction synthesis,

our framework prioritizes interactive motion-relevant infor-
mation, which can result in partial rather than complete
motion sequences when the input text describes extended
human interactions. Moreover, our pose animator—taking
only interactive poses as input—cannot fully capture the se-
mantic context or temporal ordering in text (e.g., distin-
guishing “lifting up” from “putting down”). Incorporat-
ing text conditioning into the pose-to-interaction stage is a
promising avenue for improving text-to-interaction—specific
tasks. However, since our main focus is on pose-to-
interaction animation without enforced text input, this am-
biguity can be a strength, enabling multiple valid and phys-
ically plausible motion interpretations from the same inter-
active pose.

Inter-person penetrations. While our method enhances
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Figure 2. Longer motion generation by chaining interactive poses. We reuse the last generated pose as the next input, resetting interactive
time to zero, enabling sliding-window synthesis of longer motions (key-frame in magenta box).

Interactive Pose

Interaction Animation (left—right: time steps)

Figure 3. Complex interactive pose animation. Given an interactive pose, our pose animator can synthesize high-dynamics (1st row)
and close-contact (2nd row) human-human motions, leveraging the strong interactive prior learned from high-quality mocap data.

contact in two-person interactions, it does not explic-
itly model interpenetration between individuals. Conse-
quently, in close-contact scenarios—such as the first row in
Fig. |—some interpenetration may occur in the generated
motion sequences. Achieving a balance between realistic
contact and preventing interpenetration remains a challeng-
ing problem, as enforcing strict physical constraints could
compromise natural motion quality. Addressing interpen-
etration modeling and ensuring physically plausible two-
person interaction motion generation is an important direc-
tion for future work.

Lack of scene awareness. When applied to in-the-
wild two-person pose animation or motion generation, our
method relies solely on human pose information and ig-
nores the surrounding environment. As a result, generated
motions may appear physically implausible in certain cases,
such as the 2nd row of Fig. 1, where collisions occur. More-
over, interactive poses can sometimes be ambiguous, caus-
ing noticeable motion errors when used as the sole input.
A more robust approach would integrate additional scene
information (e.g. image features) to improve motion pre-
diction and dynamics forecasting.

Inaccurate contact. The interactive pose estimator or our
interactive pose generator may occasionally produce inac-
curate interactive poses, resulting in poor human—human
contact in the generated motions, as seen in the 3rd and 4th
rows of Fig. 1. These inaccuracies result in unrealistic mo-
tion due to the lack of precise interactive pose inputs. Since

the pose animator primarily models temporal dynamics and
depends on the interactive pose for spatial information, it
often cannot correct errors arising from inaccurate interac-
tive poses. Additionally, our generated interaction motions
may exhibit artifacts such as foot sliding, a common issue
in human motion synthesis. While such artifacts can often
be mitigated through post-processing, we do not apply any
post-processing in our examples.

C. Qualitative results

Longer interactive motion generation. Our framework is
designed for short-term interaction generation but naturally
extends to longer sequences. The pose animator takes an in-
teractive pose together with an interactive time to synthesize
both past and future motions centered on that pose. Longer
sequences are produced by chaining segments in a sliding-
window manner: the last generated pose of one segment is
reused as the starting pose for the next, the interactive time
index is reset to zero (beginning of the new segment), and
generation continues. Repeating this process yields coher-
ent long-term interactions, as shown in Fig. 2, where key-
frames are labeled in magenta box.

Complex interactive pose animation. As shown in Fig. 3,
beyond daily motions, our pose animator can synthesize
complex interactive motions involving high dynamics (1st
row) and close contact (2nd row) between two people, ben-
efiting from the strong interaction dynamics learned from



Input Interaction Animation (left—right: time steps)

Figure 4. Interactive pose image animation on FlickrCI3D dataset [4]. Left shows the input image, right shows the animated interaction
motions. Interactive-pose frame is labeled in green box. Our model generalizes well to in-the-wild interactive poses, producing realistic

human-human interaction dynamics.

high-quality mocap data.

Two person image human motion animation. We provide
additional in-the-wild interactive pose animation results in
Fig. 4. Given an interactive frame, we extract two-person

poses using an off-the-shelf model [14], and animate the
them with our interactive pose animator. To render the in-
teraction, we use an off-the-shelf inpainting model [19] to
remove the original individuals and overlay the generated
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Figure 5. Single-person pose interaction generation on Motion-X dataset [12]. Left shows the single person image input, right shows
the generated two-person interaction dynamics. The generated interactive pose frame is labeled in magenta box. The bottom row show
the single-pose input with accompanying text input. Given different single-person poses, our interactive pose generator produces plausible
interactive poses under flexible conditions, while our interactive pose animator synthesizes realistic human-human motions. Our model

demonstrates strong performance in challenging in-the-wild settings.

motion. The results demonstrate that our model general-
izes well to in-the-wild interactive poses, producing realis-
tic human-human interactions.

Single-person image human motion interaction genera-
tion. We present additional single-person image interac-
tion motion generation results on the Motion-X dataset [12]
in Fig. 5. Given a single-person image, we first extract
the pose using an off-the-shelf pose estimator [2] and then
generate interactive poses with our interactive pose genera-
tor. As shown, our model synthesizes plausible interactions
from diverse single-person inputs. Finally, we apply our in-
teractive pose animator to generate two-person dynamics,
demonstrating its effectiveness in challenging in-the-wild
scenarios.

Interactive pose animation. We provide additional vi-
sualizations of interactive pose animation on the Inter-
X dataset [22], Dual-Human dataset [3], and Duolando
dataset [17] in Fig. 6. Our model could successfully syn-
thesize realistic dancing motions from out-of-domain inter-
active poses on the unseen Duolando dataset.

We further evaluate our method on the InterHuman

dataset [1 1], a more challenging out-of-distribution setting,
with results presented in Fig. 7. The InterHuman dataset
provides SMPLH [13] annotations for two-person inter-
actions, primarily for text-to-motion synthesis. However,
the annotated motions exhibit less accurate contact com-
pared to other datasets. To align with our framework, we
convert the provided SMPLH [13] representation to SM-
PLX [15] and extract interactive poses from the test motion
sequences. Despite inherent contact inaccuracies due to the
dataset’s annotation conventions and diverse pose distribu-
tions, our model successfully synthesizes realistic interac-
tion motions, demonstrating the strong generalization ca-
pability of the interactive pose prior for human interaction
animation.

Furthermore, we present a qualitative comparison
against two baselines (InterGen*, random-pose in Tab. 2 of
the main paper) in Fig. 8. As shown, InterGen [11] and the
model trained with random-pose shows less accurate con-
tact and more body penetration than ours, underscoring the
importance of interactive pose priors for realistic contact
modeling and interaction generation.
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Figure 6. More interactive pose animation visualization on Inter-X dataset [22], Dual-Human dataset [3], Duolando dataset [17]. Our
pose animator generalizes well to out-of-domain interactive poses and synthesizes realistic dancing motions on the unseen Duolando two-
person dancing motion dataset.
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Interactive Pose Interaction Animation (left—right: time steps)
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Figure 7. Interhuman dataset [11] interactive pose animation results. We convert dataset provided SMPLH [13] to SMPLX [15]
representation and select interactive poses from test motion sequences. Despite contact inaccuracies due to dataset conventions and pose
variations, our model synthesizes reasonable motions, demonstrating the strong generalization capability of interactive poses for guiding
human interaction animation.
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Figure 8. Interactive pose animation comparison on Inter-X dataset [22]. Compared to InterGen [11] and model trained with random
poses, our method achieves better contact and human dynamics. Both baselines exhibit severe body penetration and less accurate contact,
while our approach, guided by interactive poses, ensures more realistic interactions.

Text-to-interaction synthesis. We present additional text- method effectively generates realistic two-person interac-
to-interaction motion synthesis results in Fig. 9. Our tions from short phrases or simple words. By leveraging an
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Input Text: One person chases the other person
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Input Text: One person sits down first, another sits on his/her lap
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Input Text: One person goes to the other person’s ear and whispers to him/her
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Input Text: hand shake
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Input Text: hug
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Input Text: posing

Figure 9. More text-to-interaction motion synthesis results. Our method synthesizes realistic two-person interactions from short phrases
or single words.
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Figure 10. Single-pose guided interaction motion synthesis result on Inter-X [22] and Dual-Human [3] datasets. The input single-
person pose is shown on the left. Our method generates appropriate interactive poses from various inputs, capturing vivid underlying
human dynamics.
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Figure 11. Single pose-to-interaction motion synthesis comparison on Inter-X dataset [22]. Compared to the end-to-end without
interactive pose as anchor (w/o anchor) model, our method synthesizes more realistic interactive poses, leading to more natural human

interactions.
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Generated Video (left—right: time steps)

Figure 12. Generated two-person interaction videos from state-of-the-art video diffusion model [10]. The generative video suffers from

unrealistic and temporally inconsistent interactive motions.

intermediate interactive pose representation, our approach
ensures consistent interaction and maintains accurate con-
tact between the two individuals.

Single pose-to-interaction motion synthesis. We present
single pose-to-interaction motion synthesis results on the
Inter-X [22] and Dual-Human [3] datasets in Fig. 10. As
shown, our method generates appropriate interactive poses
from various input poses while effectively capturing vivid
underlying human dynamics. A qualitative comparison
with the end-to-end baseline without interactive pose as an-
chor (Tab. 4 of main paper) is provided in Fig. 11.

D. Future Work

As discussed in the Introduction of the main paper, exist-
ing video diffusion models [1, 6, 7, 10] can generate human
images over time; however, the resulting motions often lack
temporal consistency and realism, as shown in 12, where we
applied state-of-the-art image-to-video diffusion models to
generate videos from a human interaction image in Fig. | of

the main paper. The generated videos suffer from unrealis-
tic and inconsistent motions. A promising application of our
work is to use the generated motion as a conditioning signal
for pose-guided human video diffusion models [8, 23, 24].
By providing high-quality motion input tailored to the input
image, this approach could significantly enhance the real-
ism of the generated motion. We consider this an exciting
direction for future research.
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