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Abstract

Reference-guided face restoration can have better iden-
tity preservation than non-reference-based methods. How-
ever, existing methods can (a) easily produce artifacts, pos-
sibly attributable to inefficient facial priors and (b) do not
well preserve fine-grained facial details crucial for iden-
tity, such as freckles, tattoos, and scars. In this work, we
propose solutions for these problems. (1) We incorporate
a stronger facial prior, generative facial prior (GFP), for
reference-based face image restoration. (2) We identify an
ambiguity and point out that traditional loss prevents the
network from heavily copying facial features from the ref-
erence. To address this, we set a new goal and come up
with a new loss to realize the new goal. More specifically,
when the ground truth and reference are different (e.g., dif-
ferences in wrinkles, makeup, facial hair, etc.), which one
should the output look like? As a simple example, ground
truth does not have a mole while reference has one. Tra-
ditional loss chose the ground truth, which seems natural,
but then the network also learns to ignore reference’s facial
features; during testing, the network often hesitates. Our
new goal is to copy features from the reference as much as
possible while maintaining semantic consistency with the
degraded input. We propose to use spatial minimum loss
and cycle consistency loss to realize the new goal and make
the network copy features without hesitation. Using only
a single reference image, our proposed method is able to
restore highly degraded images while accurately captur-
ing fine-grained facial details. To our knowledge, we are
the first face restoration framework that is able to restore
faces at this granularity. Code and data are available at
https://github.com/RefineFIR/RefineFIR.

1. Introduction
State-of-the-art face restoration methods [36,40,47] typ-

ically involve using pre-trained face GANs as a prior to pro-
duce sharp and realistic-looking faces. However, the main
focus of these recent works is on unconditional face restora-
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Figure 1. Given a reference image, our method ReFine can re-
store a severely degraded image while preserving identity and fine-
grained details. Notice the highly detailed tattoos in rows 1 and
2, the scar under different lightings in row 3, and the different eye
colors in row 4. “ReFine” is an acronym derived from “Reference-
based Face Restoration with Focus on Fine Details.”

tion. This works well for instances where the degradation
is mild, and most of the facial features are visible in the in-
put. In cases with severe degradations, while these methods
can recover a high-quality face, the identity of the original
face will likely be lost. At the same time, fine-grained facial
details such as freckles, eye colors, tattoos, scars, etc. will
also be lost in the restoration. It is important to get these
facial details right. In many cases, they are unique to an

https://github.com/RefineFIR/RefineFIR


individual and are distinctively tied to their identities.
There have been several works that propose to alleviate

these issues by using a high-quality reference image in ad-
dition to the degraded image [10, 25]. The identity and fa-
cial features are borrowed from the reference image in or-
der to guide the restoration. However, as our experiments
in Figure 6 show, their image quality is subpar compared to
SOTA blind face restoration works, and they are also unable
to capture fine-grained facial details well.

In this work, we revisit reference image-guided face
image restoration by incorporating the diverse and rich
generative facial priors (GFP), which outperform existing
reference-based methods in overall quality. More impor-
tantly, we deeply analyze the task of reference-based face
image restoration, challenge the loss design of all traditional
methods, and propose new loss functions.

All traditional reference-based face image restoration
methods use the loss measuring the difference between the
output and the ground truth (the clean version of the input).
At first glance, this seems reasonable and natural, but it ac-
tually hinders the algorithm from copying features from the
reference image. Why is that? In daily life, there are of-
ten cases where the ground truth and the reference image
look different (like makeup (influencing moles, freckles,
eyebrows, eyelashes, tattoos), wrinkles, accessories, hair,
and beard, etc.). Let us take a simple example: the ref-
erence image has a mole, but the ground truth does not
(perhaps it is covered by makeup). Should the output
have a mole? The answer is: if you cannot tell from the
input whether there is a mole or not, then the output should
have one. If you can clearly see from the input that there
is definitely no mole, then the output should not have one.
If the traditional loss is used, the network would know to
ignore the mole in the reference when it sees such training
data. However, during testing, when there is a mole in the
reference, copy or not? Basically, you do not know which
features in the reference should be copied and which should
not, leading to hesitation in the network, which is reluc-
tant to copy features, resulting in unclear and faint or even
loss of fine-grained facial details. We propose to use spa-
tial minimum loss (either close to the ground truth or the
reference) and cycle consistency loss (maintaining similar-
ity to the degraded input). If our proposed loss is used, the
desired effect can be achieved. The network is clear when
to copy features from the reference. As can be seen from
Figure 1, our method can heavily copy features from the
reference while maintaining consistency with the input; it
restores severely degraded faces at unprecedented granular-
ity.

We summarize our contributions in the following:
1. We identify an ambiguity in reference-guided image

restoration. We set a new goal to borrow high-quality
details from the reference as much as possible while

maintaining coherence with the degraded input.
2. The new goal is realized by a combination of losses

(spatial minimum loss, cycle consistency loss, and
other assistant losses) which are to ensure our face
restoration borrows features heavily from the reference
but remains semantically consistent with the input.

3. We incorporate generative facial priors for the
reference-guided face image restoration task. The
pipeline improves the overall quality and enlarges the
task’s scope so that the input could be more degraded,
and the reference image could be very different from
the ground truth.

4. Extensive experiments show that our method demon-
strates a significant performance superiority over both
reference-based and non-reference-based in terms of
preserving identity and fine facial features. Our
method is the first to restore faces at this granularity.

2. Related work

2.1. Blind face restoration

Restoring a degraded face image is a challenging task
because of the unknown degradation process and severe
information loss. A face prior is thus usually exploited
for this task. Based on how the face prior is used, pre-
vious works can be divided into three categories. 1) Ge-
ometric prior – facial landmarks [1, 6, 21], face parsing
maps [4, 34, 39], facial component heatmaps [42], or 3D
shapes [14] are included into the network design. Such pri-
ors however cannot provide fine-grained facial details for
high-quality image restoration. 2) Dictionary prior – a dic-
tionary is learned from face images, where each word in
the dictionary contains rich face details in the feature do-
main. The LQ image is then reconstructed by these words.
These methods [12, 23, 37, 47, 48] can recover better details
than methods in 1). 3) Generative facial prior (GFP) – in
recent years, pre-trained StyleGANs [17–19] have shown
powerful face generation capability and are employed in
image restoration. These include early exploration by GAN
inversion [11, 29, 33] and recent success by fusing input’s
structural information and the face generator for superior fi-
delity [2, 28, 36, 40]. Diffusion model-based methods like
DifFace [43], DiffBIR [27], and DR2 [38] can also achieve
great performance (although still slightly worse than Style-
GAN methods in terms of identity preservation and speed).
However, when the input face image is severely degraded,
or the face has unique details (like freckles, wrinkles, and
tattoos), the restored images by all these methods, although
still a face, do not match the original identity and do not in-
clude individualistic details because the algorithms have no
way to get such information.



Input Reference

Landmark Detector

<latexit sha1_base64="9PTpqDHpBuE9ssY9yyjdPb2ycKA=">AAAB+nicbVDLSsNAFJ3UV62vVJduBotQQUoiRV0W3bisYB/QhDKZTNqhk8kwM7GU2E9x40IRt36JO//GaZuFth64cDjnXu69JxCMKu0431ZhbX1jc6u4XdrZ3ds/sMuHbZWkEpMWTlgiuwFShFFOWppqRrpCEhQHjHSC0e3M7zwSqWjCH/REED9GA04jipE2Ut8uj5EUVQ+HiT6HnlD0rG9XnJozB1wlbk4qIEezb395YYLTmHCNGVKq5zpC+xmSmmJGpiUvVUQgPEID0jOUo5goP5ufPoWnRglhlEhTXMO5+nsiQ7FSkzgwnTHSQ7XszcT/vF6qo2s/o1ykmnC8WBSlDOoEznKAIZUEazYxBGFJza0QD5FEWJu0SiYEd/nlVdK+qLmXtfp9vdK4yeMogmNwAqrABVegAe5AE7QABmPwDF7Bm/VkvVjv1seitWDlM0fgD6zPH01Ok2M=</latexit>

warp(·,  )

<latexit sha1_base64="OHSKYgbB/bMsxIwVwwHSAv9ydVg=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BL3pLwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mHGCfkQHkoecUWOl+n2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rw2p9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvctypV4pVW+yOPJwAqdwDh5cQRXuoAYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A6HrjNY=</latexit>

I

StyleGAN2
Reference Warping Pipeline

Warped reference Input+warped reference Output

Reference

Figure 2. Overview of our ReFine network. We first warp the reference face image towards the input face image based on the facial
landmarks detected by fine-tuned landmark detection algorithm. Then the input and the warped reference images are sent to an encoder.
The facial structural information extracted in different levels and the identity feature vector extracted from the reference image are used
to modulate the pre-trained face generator network StyleGAN2 to generate the output. During training, we employ spatial minimum loss,
cycle consistency loss, adversarial loss, and identity loss.

2.2. Reference-guided face restoration

A reference image of the same identity can provide fine-
grained facial details to guide the restoration. Depending on
the number of reference images being used, these methods
have two categories.
Single reference Single reference-guided face restoration
has been explored in the literature, with GFRNet [25] and
GWAINet [10] being two contemporary methods that are
most relevant to our work. GFRNet learns two UNet-like
subnetworks, one for warping the reference image, the other
for restoring image restoration. GWAINet is composed of a
localization network for warping and a generator network
for fusing the features from the two inputs and generat-
ing the image. GWAINet does not require facial landmarks
during training. It is worth mentioning that GFRNet and
GWAINet often perform worse than SOTA non-reference-
based methods. In contrast, our method ReFine warps the
reference using keypoints from a finetuned facial landmark
detector. More importantly, ReFine takes advantage of the
powerful generation capability of a pretrained StyleGAN to
ensure a realistic output.
Multiple references Instead of relying on a single reference
image, ASFFNet [24] selects the optimal guidance based on
landmark locations, while Wang et al. [35] used pixel-wise
weights on the multiple exemplars for face image denoising
and super-resolution. More recent methods use advanced
dictionary learning or StyleGAN, e.g., DMDNet [26] uti-
lized a dictionary which is constructed by tens of reference
images, and MyStyle [32] fine-tuned a pretrained Style-
GAN face generator by ∼ 100 same identity images to per-
sonalize the generator. Although multiple reference image-
based methods achieve good performance, the need for mul-
tiple references restricts their use. Although ASFFNet and
DMDNet can also accept a single reference, the perfor-
mance would drop considerably. In contrast, we design an

algorithm that only needs a single reference, making it more
accessible to users.

Common to all existing single (or several) reference(s)-
guided face restoration approaches, they might generate ob-
vious artifacts (see Figure 6, which we show can be fixed
by using GFP) and generate unclear fine-grained facial de-
tails or even lose them. We go through in detail why this
happens in Section 3.2.

3. Methodology
3.1. Overview

Given an input face image with an unknown degradation
and a reference image, our goal is to restore the face image
by copying the features and identity from the reference.
Network As shown in Figure 2, our network is an encoder-
decoder architecture. The decoder is a pre-trained Style-
GAN2 [19] to provide a generative facial prior. We first
warp the reference y towards the degraded input xd (whose
ground truth is x) to get warped reference yw, and then feed
xd, yw, and identity embedding of the reference into the
network G, and we have

x̂ = G(xd, yw, I(y)) (1)

where x̂ is the output and I(·) is a pretrained identity em-
bedding network by ArcFace [8].

Our network architecture is similar to GPEN [40], with
a convolutional encoder that encodes the input image and
warped reference into intermediate feature stacks and a
style code, which are then fed to the StyleGAN2 prior.

There are two architectural differences between ReFine
and GPEN. Firstly, we have an additional identity embed-
ding as an input. Let s be the style code from our encoder
and I(y) as our identity embedding of the reference image.
We concatenate s and I(y) vectors and pass it through four



MLP layers of dimension 512 with Leaky ReLU activations
of slope 0.2 to obtain our final style code sy . sy is then
fed into the Modulated Convolution blocks in StyleGAN2.
The second difference compared to GPEN is how we fuse
features from the encoder and features from the StyleGAN2
prior. We fuse the two features by simple interpolation with
a predicted mask while GPEN concatenates them. More de-
tails can be found in the supp. Section 2.

The network is trained on synthetic data triplets
(x, xd, y) where xd = T (x, θ) and T is a differentiable
parametric degradation function. We employ a combina-
tion of losses which will be detailed in Section 3.3. The
StyleGAN2 prior is finetuned during training.
Warping It is important for reference face y to be spatially
aligned to xd so that G can easily copy facial details. Un-
like previous work that used complicated methods such as
deep features warping [24] or learning entirely new warp-
ing subnets [10, 25], we simply find correspondences be-
tween xd and y and warp them in the image space. We ob-
served that by finetuning existing face landmark detectors
(like [7,15,20]; we use a commercial implementation of [7])
on low-quality data with a fixed range of degradations, the
facial landmarks on low-quality inputs can be detected with
high accuracy (see Figure s2 in supp.). More details of the
warping can be found in the supp. Section 3.
Working scope and limitation We target restoring face im-
ages with middle to severe degradation levels [5]. For mild
to middle degradations where the input still contains facial
details, existing methods like GFP-GAN [36], GPEN [40],
and CodeFormer [48] can work reasonably well, and there
is no need to use a reference. For very severe degradations,
the finetuned landmark detection network might not work,
and then our method will fail. With the use of GFP and well-
engineered landmark detection, we pushed the boundary of
the working scope of existing reference-based methods in
terms of degradation levels.

3.2. Ambiguity in reference-guided face image
restoration and the proposed goals

We identify a major ambiguity in reference-based face
image restoration which causes a dilemma. When the fa-
cial details of the ground truth and the reference perfectly
match, there is no doubt that the output’s details should
look like the ground truth. But when they have differences
in facial details, what the output’s details should look like
(remember the input is highly degraded)? Still the ground
truth? Somewhere in between (but how)? Or the reference?

All previous reference(s)-guided approaches GFR-
Net [25], GWAINet [10], ASFFNet [24], Wang et al. [35]
and Li et al. [26] exploited different ways to fuse the input
and the reference(s) and trained the network to minimize
the distance between the output x̂ and ground truth x and
do not include reference y in their training objective. Thus,

Identity 1 Identity 2

Figure 3. We visualize images from the same person in the
CelebA-HQ dataset. In many cases, the same person can look
very different in different images. For example, we have images
taken at different ages, under various lightings, with and without
sunglasses. When trained on such datasets, the reference image we
choose can look very different from the input image. This presents
a dilemma for our optimization; see Section 3.2.

their goal is
1. Restore back the ground truth

In an ideal scenario where x perfectly matches y, by learn-
ing to reconstruct x from xd, the network also learns to copy
features directly from y. However, suppose y does not per-
fectly match x, the network has to ignore the unmatching
parts of y while “hallucinating” details to reconstruct x. De-
tails from y are then likely to be lost and it is unclear what
parts of y the model are supposed to preserve.

There are many cases where x does not match y be-
cause people can look very different under different light-
ings, makeups, postures, seasons, or even due to accessories
such as glasses. This is very evident if we look at images
from the same person in dataset such as CelebaA-HQ [16]
(see Figure 3). There are various pictures taken a long time
apart, under various different conditions, making it some-
what difficult to even match them to the same identity. It is
virtually impossible to obtain a perfect dataset where all the
images perfectly match. Suppose that this dataset does exist
and we train under traditional objective (only making x̂ look
like x). During training, the model will only see reference
images that very closely resemble x (in terms of facial de-
tails). It is then unlikely it will generalize and perform well
during test time where users will likely upload a reference
image that does not closely resemble x.

In contrast, we think, on a high level, reference-guided
face restoration should have four goals, which are:

1. Copy features from reference as much as possible.
2. Generate details not available from reference.
3. Output semantically consistent with degraded in-

put.
4. Face must be realistic.

Goal 1 is especially important because the main reason we
use a reference is to borrow facial details that will be other-
wise unavailable in blind restoration.

Our goals are more inclusive. It goes back to the tradi-
tional goal if there is no mismatch in facial details between
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Cycle Consistency Loss

Figure 4. We use a combination of losses to realize the proposed inclusive goal for reference-guided face restoration. Left: Spatial
minimum loss ensures that our output, at each spatial location, is close to either the warped reference image or the ground truth image.
Right: In principle, assuming faithful restoration, the degradation and restoration steps should cancel out each other. Cycle consistency
loss is thus the loss between the input and the degraded output. The cycle consistency constraint ensures that our output preserves the
semantics of the input.

the ground truth and the reference. It can handle more gen-
eral cases where there is a mismatch, like in the training
dataset or during the test time. Looking from an extreme
case, suppose xd is very degraded with identity details miss-
ing and y looks very different from the original x. Follow-
ing goal 1, the expected behavior for the model is to take
identity details from y to restore xd. The expected output x̂
should thus look like y instead of x, while of course seman-
tically matching xd (goal 3). This cannot be realized by the
traditional training objective of reconstructing x.

Based on the above discussion, we argue that training
the model to make the output look like x only will likely
cause issues with preserving fine-grained details from the
reference image; in order to preserve sharp facial details
and realize the more inclusive goal, we need a new objective
design.

3.3. Objective functions

The common objective for face restoration is simply an
L2 or perceptual loss between x̂ and x [10, 24–26, 35]. As
discussed in Section 3.2, using x as the only target might
be inappropriate and not inclusive as x can look very differ-
ent from reference y. We instead formulate a combination
of losses (see Figure 4) in order to tackle all the goals of
reference-guided face restoration as outlined in Section 3.2.
Spatial minimum loss Following goals 1 and 2, we want x̂
to have details from both x and y. We thus introduce spatial
minimum loss, which essentially says that at each spatial lo-
cation, x̂ should either be close to yw or x. Specifically, let
La = L(x̂, x) and Lb = L(x̂, yw) where L(·, ·) is an ele-
mentwise distance function (we use LPIPS [45]), our spatial
minimum loss is thus

Lmin = E[min(La,Lb)] (2)

Intuitively, pixels that are closer to x should be pushed
closer to x, and vice versa. However, using Lmin naively
in training results in x̂ = yw, where G simply copies the
warped reference. This is because yw is an input to G and it

is easier to learn an identity function than to hallucinate new
details to match x. As a result Lmin will always be mini-
mized w.r.t. yw. x̂ will thus look like yw which obviously
does not stay faithful to xd.
Cycle consistency loss To prevent this from happening and
ensure that the output semantics match the input’s (goal 3),
we formulate the cycle consistency loss inspired by Cycle-
GAN [49]. When we restore a degraded image to a clean
image, we expect that performing the same degradation on
the cleaned image will return us to the degraded image.
Specifically, recall xd = T (x, θ) that we degraded image
x with differentiable function with parameter θ. Using the
cycle consistency argument, our cycle loss is

Lcycle = L(T (x̂, θ), xd) (3)

With Lcycle, the restored face will be faithful to the de-
graded input, which now prevents the network from solely
copying details from yw.
Adversarial loss In addition to the two above losses, we
also have an adversarial loss to ensure the face stays realistic
(goal 4). We need an adversarial loss because Lmin and
Lcycle encourage G to produce an image close to x or yw at
each spatial location. This does not guarantee that x̂ will
be a coherent and natural-looking face. Adversarial loss
penalizes when G produces unnatural blending artifacts.
Identity loss Lastly, there is no guarantee that yw perfectly
preserves the original identity of y after warping. Thus, by
copying features from yw, x̂ still might not look like the
original reference y. We thus include an identity loss be-
tween x̂ and y. Specifically,

Lid = 1− I(x̂) · I(y)
||I(x̂)||||I(y)|| (4)

These 4 losses ensure that 1) the restored face preserves
details from both the degraded face and reference face; 2)
the overall looking of the output and the degraded face is
the same; 3) the face looks natural.
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Figure 5. Visual comparison results for face super-resolution (×8).
Ours performs much better than all existing reference-based meth-
ods whose development timeline is shown in the upper left. Notice
the five moles, the nose stud, and the tattoos; best viewed when
zoomed in.

4. Experiments

We perform quantitative and qualitative comparisons
between ReFine and several SOTA blind and reference-
guided face restoration approaches. For blind face restora-
tion, we compare with two SOTA methods, GFPGAN [36]
and CodeFormer [48]. GFPGAN is a widely used face
restoration method based on StyleGAN2 prior; Code-
Former relies on a learned discrete codebook prior. For
reference-based methods, we compare with the publicly
available GWAINet [10], ASFFNet [24], and DMD-
Net [26]. GWAINet uses a single reference image and while
ASFFNet requires multiple reference images, it only se-
lects one as the input to the pipeline. Thus, it is still suit-
able for our comparison. DMDNet is a upgraded version
of ASFFNet (see Figure 5 upper left for the timeline of
the methods). GWAINet can only do super-resolution (SR)
while others can do both SR and restoration.
Degradation synthesis For ×8 SR task, we downsize the im-
age and then upscale it by bicubic method. For restoration
task, we follow a similar degradation procedure as [36] to
generate our training data. The degradation parameters are
selected to result in severe degradations. More details can
be found in the supplementary.
Dataset Our model is trained on CelebRef-HQ dataset [26],
which contains celebrity face images from Bing. This
dataset contains 10,555 images with 1,005 identities. Each
person has 3 ∼ 21 high-quality images.
Training process We train the model for 800k iterations with
a batch size of 4 using Adam optimizern [22], and set the
base learning rate to 2× 10−3 with betas= (0.5, 0.99). The
StyleGAN2 prior is finetuned at a learning rate of 4×10−4.

We evaluate our models on three datasets, (1) CASIA-
WebFace dataset [41], from which we select 19,557 good-
quality image pairs with 10,575 identities based on the
BRISQUE metric [30], (2) our new ReFine dataset where
we collected 34 celebrities with unique facial features from

Table 1. Quantitative results for face image restoration tested on
CASIA-WebFace dataset. Our PSNR/SSIM/LPIPS are compara-
ble or even better than other methods although our method does
not directly optimize the output to be close to the ground truth. Our
method is SOTA in terms of image quality measured by NIQE and
FID while also having the best Identity Preservation Score (IPS).

Method GWAINet ASFFNet Codeformer GFPGAN Ours

PSNR ↑ 22.91 23.72 23.76 23.63 23.77
SSIM ↑ 0.782 0.814 0.815 0.802 0.803

LPIPS ↓ 0.383 0.161 0.176 0.203 0.158

NIQE ↓ 4.854 4.214 4.074 4.364 4.011
FID ↓ 73.09 58.61 64.22 51.06 49.46

IPS ↑ 0.2662 0.3660 N/A N/A 0.4649

the internet ourselves, and (3) self-collected real-world data
from acquaintances (70 low-quality images from 14 peo-
ple). We use (1) for quantitative comparison, (2) for quali-
tative comparison, and (3) for user study.
Quantitative metrics We emphasis that ReFine is focused
on details and identity preservation, and some quantita-
tive evaluations do not capture our strength. Thus, we
performed extensive qualitative evaluations and user study
later.
Restoration quality As pointed out in Section 3.2, we do
not directly optimize the output towards the ground truth
like other methods [10,24–26,35]. However, our metrics in
PSNR, SSIM, and LPIPS, which compare the output with
the ground truth, are comparable or better than other meth-
ods (see Table 1). We also adopt Naturalness Image Qual-
ity Evaluator (NIQE) [31] and Fréchet Inception Distance
(FID) [13] to measure how closely the restored image dis-
tribution matches real scene/face image distribution. While
this does not tell us how accurate the model is at preserving
identities, it gives us an idea how good the restoration qual-
ity is. From Table 1, ReFine compares very favorably com-
pared to previous reference-guided approaches and matches
or exceeds the quality of blind restoration approaches.
Restoration accuracy For reference-guided face restoration,
it is important for the method to preserve the identity from
the reference. We can measure this accuracy by simply
computing the cosine similarity between the output image
and the reference image and averaging this over the en-
tire testset. We refer to this as Identity Preservation Score
(IPS). Because a reference is not available for blind face
restoration, we only compute IPS for the reference-guided
approaches. From Table 1, ReFine has a substantially better
IPS compared to other approaches. That is to say, ReFine is
better at copying identity features from the reference, vali-
dating our approach.
Qualitative comparisons We provide qualitative compar-
isons in Figures 5 and 6. ReFine produces natural and ac-
curate images, preserving fine details at an unprecedented



(a) Input (b) DMDNet (c) ASFFNet (d) CodeFormer(e) GFPGAN (f) Ours (g) GT (h) Reference

1

2

3

4

Figure 6. Visual comparison results for face image restoration. Our method is best at preserving identity and facial features (e.g. dimples
in row 1, eyebrow in 2, eyebrow, eye’s makeup and jawline in 3, moles in 4) compared with other works. Please zoom in to see the details.

level, while other approaches either struggle with realism
or accuracy. Notably, for restoration task as shown in Fig-
ure 6, the reference-guided DMDNet and ASFFNet have
a difficult time producing realistic images. This is likely
because they do not capitalize on a GFP which has been
shown to produce very realistic images. ASFFNet in par-
ticular, does have some limited success in preserving some
fine-grained facial details, like the eyebrow in row 2, but
it is not consistent, often missing out on important facial
details, see dimples in row 1 and eye’s makeup in row 3.
On the other hand, SOTA blind face restoration methods
like CodeFormer and GFPGAN produce consistently bet-
ter quality results compared to their reference-guided coun-
terparts. However, since the input images are heavily de-
graded, they are unable to preserve the identity and recover
the facial details. More results are in the supplementary.
Ablation study If we only include the standard perceptual
and adversarial loss like [10, 24–26, 35], it is hard to teach
the model whether to “copy” features from the reference
or “hallucinate” details directly. In this ablation study, we
show the importance of our used losses – spatial minimum
loss Lmin and cycle consistency loss Lcycle. Lmin encour-
ages the network to borrow fine-grained features from the
reference image while Lcycle prevents the network from
copying features indiscriminately from the reference and
causing artifacts. Figures 8 and 9 show that ours (GFP + our
loss) can better preserve the fine facial details like moles,
lips, beard, etc. than the baseline method (GFP + traditional
loss, where the network is the same except the loss).

In order to understand the design of our network, we did
ablation study on limited guidance information or limited
loss. We show them in Figure 7. The results demonstrate
that each loss and each piece of guidance information play a
crucial role in determining the network’s final performance.

Input Reference Ours (full) Ground truth

Only min. loss Only cycle loss Only warped ref. Only id.
(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. Ablation studies on limited loss or limited guidance in-
formation. In the second row, from left to right are results (e)
using spatial minimum loss only, (f) cycle consistency loss only,
(g) only warped reference (no reference id) for guidance, (h) only
reference id (no warped reference) for guidance, respectively. No-
tice that (g)’s nasal tip is completely wrong, and (h) does not have
fine facial details. Please zoom in to see the details.

Changing identities As a consequence of our method, we
can achieve identity swapping since our training loss en-
courages copying from the reference image. Figure 8 shows
a few examples with different identities as the reference.
ReFine is able to copy the identity from the reference and
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Figure 8. Changing identities when reference image is from a different person. Here “Baseline” is our method but with traditional loss.

Input Baseline
(GFP + traditional loss)
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×
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Missing stubble

Figure 9. Results on real-world data. The user of the same person
can notice the subtle difference easily. Please zoom in.

details such as the cheekbone and eyebrow. At the same
time, even with such a drastic change in identity (such as us-
ing a different gender), the output is still semantically con-
sistent with the input degraded image, i.e. it is a reasonable
restoration.

Real-world results and user study We show real-world re-
sults in Figure 9. Notice the moles in the first three rows, the
facial patches in the third row, the eye color, upper lip and
beard in the fourth row, and the lips in the fifth row. The user
of the same person will notice the subtle difference easily.
Because of this, Table 2 introduces a new evaluation strat-

egy: does the same user think the restored image is their
own face, or someone else’s face? After restoring one’s im-
age by several methods, we ask the same user to select their
preference. The results show that (1) our method is predom-
inately preferred over all existing methods (Table 2 second
row), and (2) our proposed loss is highly effective (Table 2
third row).

Table 2. User study (14 people) for face image restoration tested
on real-world data. After restoring one user’s images by different
methods, we ask the same user to select their preference because
they can easily judge the faithfulness. ‘Baseline’ is the same net-
work but with the traditional loss. ‘NI’ means ‘not included in
the comparison’.

Method DMDNet ASFFNet Codeformer GFPGAN Baseline Ours

User preference ↑ 0% 0% 11% 7% NI 82%

User preference ↑ NI NI NI NI 10% 90%

5. Conclusion and future work
In this paper, we propose a pipeline which exploits gen-

erative facial prior for reference-guided face image restora-
tion. We identify an ambiguity for the output when facial
details of the ground truth and the reference do not match,
and the ambiguity and traditional loss design can negatively
impact restoration quality and accuracy. We then set a new
goal to resolve the ambiguity and propose a combination
of losses to realize this goal. Our approach ReFine can re-
store a severely degraded image and preserve identity and
fine-grained facial features (like freckles, tattoos, wrinkles,
eye color, etc.). Extensive experiments show that unprece-
dented detail preservation is achieved by our method. To
our knowledge, ReFine is the first restoration method that
works at such granularity, outperforming previous art by a
large margin.

Given the proficiency of GANs in handling face do-
main effectively and their swift processing speed, our ex-
periments are conducted using GAN-based methods. How-
ever, the proposed techniques hold the potential for exten-
sion to other generative approaches, such as diffusion mod-
els [3, 9, 44, 46]. Exploring these alternative methods con-
stitutes a compelling direction for future research.
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