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Personalized Restoration via Dual-Pivot Tuning
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Abstract—Generative diffusion models can serve as priors,
ensuring that image restoration solutions adhere to natural
image manifolds. For facial images, however, personalized priors
are essential to accurately reconstruct individual-specific facial
features. We propose Dual-Pivot Tuning — a simple yet effective
two-stage approach to personalize blind restoration systems while
preserving general prior integrity. Our key observation is that
for efficient personalization, the diffusion model should be tuned
around a fixed textual pivot in the first step, while in the second
step a guiding network should be tuned in a generic (non-
personalized) manner, using the personalized diffusion model
as a fixed “pivot”. This approach ensures that personalization
does not interfere with the restoration process, producing results
with a natural appearance that show high fidelity to both
identity and degraded image attributes. We conducted exten-
sive experiments with images of widely recognized individuals,
evaluating our approach both qualitatively and quantitatively
against relevant baselines. Notably, our personalized prior not
only achieves superior identity fidelity, but also outperforms
state-of-the-art generic priors in terms of overall image quality.
Project webpage is https://personalized-restoration.github.io/ and
code is available at https://github.com/personalized-restoration/
personalized-restoration.

Index Terms—Text-guided personalization, face restoration,
generative priors

I. INTRODUCTION

IMAGE restoration is an extensively researched problem,
characterized by its inherent ill-posed nature. The goal of

the restoration task is to find visually plausible and natural
images that maintain perceptual fidelity to the degraded input
image [3]. In blind restoration scenarios where no prior infor-
mation about the subject or the degradation is available, a prior
describing the manifold of natural images is needed. However,
for face image restoration, having an identity prior is necessary
to ensure that the output image remains within a manifold
that accurately represents the distinctive facial features of the
individual in the degraded image. This sets the basis for prior
work in reference-based face image restoration [4]–[6].

On a parallel track, text-to-image diffusion models [7], [8]
have revolutionized image synthesis, enabling the generation
of images from textual descriptions. These models act as
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versatile generative priors for various downstream tasks, and
were recently explored in the context of blind image restora-
tion, enhancing the naturalness of restored images [1], [9].
Moreover, the ability to personalize these diffusion models
with just a few reference images opened up new avenues
for tailored content creation [2], [10]. Despite these advance-
ments, effectively integrating personalization into diffusion-
based blind restoration systems remains an open problem.
To highlight the challenges associated with this problem,
Fig. 2 demonstrates how naive personalization approaches
fall short. For instance, a personalized text-to-image model
that simply replaces the general prior in a blind restoration
system (from [1], for example) can be disregarded by the
unconditional system which returns an output that resembles
the result of the blindly restored one (Fig. 2 (c)). Alternatively,
naive personalization of the encoder, which is equivalent to
how the system was trained, disrupts the natural image prior,
leading to a lack of detail (Fig. 2 (d)).

In this paper, we introduce a simple and efficient tech-
nique for personalized image restoration. Given a small set
(∼10) of high-quality images of a person, we aim to restore
their degraded images while ensuring that the restored image
shows: (1) strong identity preservation, (2) high fidelity to
the degraded image input, and (3) natural visual appearance.
Our approach, termed dual-pivot tuning, personalizes a blind
image restoration system comprising two core components: a
diffusion-based generative prior and a guiding image encoder.
This methodology maintains both the integrity of the underly-
ing prior and preserves fidelity to the attributes present in the
guiding images.

To achieve that, we propose a two-step solution. In the first
step, we personalize the diffusion-based generative prior, while
using a textual pivot—a fixed, unique, token within a text-
prompt (for example, “a photo of a [v] man”) that is held con-
stant during the fine-tuning process [2]. However, in our case,
the fine-tuning is performed with the guiding image encoder
such that the personalized prior learns to respect the attributes
of the guiding image. In the second step, we fine-tune the
guiding encoder to align with the personalized, “shifted”, prior
of the diffusion model, thereby retargeting its functionality.
During this phase, we aim to maintain the identity-agnostic
nature of the encoder, allowing its applicability across various
personalized models. Therefore, we fine-tune it with general
face images (not of the specific individual). We refer to the
fixed personalized network as a pivot, around which we adjust
the weights of the guiding encoder.

We find both of these operations, in this sequence, to
be essential. The textual pivoting enables identity injection
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Fig. 1: Given a degraded image of an individual’s face (a), diffusion-based blind restoration approaches [1] may not retain
the individual’s identity (b). However, with a few reference images (bottom right), our dual-pivot tuning technique (c) can
reconstruct the face while maintaining high identity fidelity to the individual without perceivable loss in fidelity.

(a) Input (b) DiffBIR [1] (c) Swap in personal-
ized prior

(d) Naive personal-
ization of the system

(e) Ours (f) Reference image

Fig. 2: Restoration Baselines. Given a real, degraded input image (a) features a person whose identity is referenced in another
image (f), a diffusion-based blind restoration method [1] with a general (non-personalized) prior, fails to preserve identity (b).
When fine-tuning independently the text-to-image prior with a text pivot only [2], the system ignores the personalized generator
when reintegrated into the system (c). Naively fine-tuning the system (fine-tuning the encoder while holding the generative
model fixed) leads to lack of detail (tattoo in the first row, beard in the second row), along with absence of generalization
across identities (d). In contrast, our method (e) effectively incorporates the individual’s identity into the restoration process
while retaining quality comparable to the base model (b).

without losing the general face prior of the base model in the
restoration system, and fine-tuning around the model-based
pivot leads to better utilization of the guiding encoder and
higher fidelity to the input image features. Furthermore, we
leverage the diffusion process’s characteristics, noting that
identity formation occurs later in the process, to reduce the
expansive fine-tuning time by ∼ ×2, which can be a significant
reduction in cost in a large user base.

We compare our method against reference-based baselines
and evaluate them using publicly available images of well-
known figures, leveraging our pre-existing knowledge of their
facial features. Our experiments show that our method re-

construct key facial features of the subject in the reference
images while maintaining high fidelity to the original degraded
image, outperforming other methods both quantitatively and
qualitatively. Moreover, our user study confirms that the
personalization contributes significantly not only to identity
preservation but also to the overall improvement of perceptual
quality. Fig. 1 shows one example that demonstrates how
our method can surpass an existing diffusion-based blind
face restoration method [1] in terms of identity preservation
while maintaining the quality of face restoration. Additionally,
the text-guided, multimodal nature of our approach enables
secondary applications such as text-guided editing.
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II. RELATED WORK

A. Blind Face Image Restoration

Distinct from general scene image restoration, face im-
age restoration typically leverages facial priors to achieve
superior results. Depending on how these facial priors are
utilized, previous methods can be broadly categorized into
three main classes. (1) Geometric prior: These approaches
incorporate geometric cues, such as facial landmarks [11]–
[13], parsing maps [14]–[16], and component heatmaps [17],
into the network design. (2) Dictionary prior: A dictionary
is first learned from a collection of face images, either in the
image space [18] or a feature space [19]–[22]. Subsequently, a
degraded image is restored using high-quality words from this
dictionary. (3) Generative prior: This category encompasses
techniques like GAN (Generative Adversarial Network) priors
[23]–[26] and diffusion priors [1], [27]–[29]. Among these
methods, approaches falling under categories (2) and (3) have
demonstrated the most promising results. Notable algorithms
include GFP-GAN [25], CodeFormer [22], and DiffBIR [1].

However, blind face image restoration faces a significant
challenge known as the quality-fidelity tradeoff [1], [22]. This
arises from the inherent limitations in the information available
in the original image. Striking the right balance between gener-
ating high-quality results while staying faithful to the original
image can be a delicate task. Generating results with too little
modification may not yield an improvement in quality, while
excessive generation can lead to a departure from the identity
of the original image. Our proposed method differs from these:
using personalized diffusion-based methods, we are able to
improve the tradeoff by achieving restoration quality while
retaining fidelity with respect to identity.

B. Reference-Based Face Image Restoration

A high-quality reference image of the same person can
greatly benefit face image restoration and help avoid the
need of the tradeoff. Depending on the number of references
used, such methods can be divided into two categories. (1)
Single-reference methods, including GFRNet [30], GWAINet
[31], and ReFine [32]. (2) Multi-reference methods, including
ASFFNet [4], Wang et al. [33], DMDNet [5] (≤ 10 reference
images), and MyStyle [6] (∼ 100 images). It is evident
that multi-reference approaches yield superior results as they
leverage more information. Notably, ASFFNet [4] selects
an optimal guidance, Wang et al. [33] employs pixel-wise
weights for multiple references, and DMDNet [5] constructs
a dictionary from multiple references; [6], [34], on the other
hand, fine-tunes StyleGAN based on personal images.

Our proposed method also utilizes multiple reference im-
ages to aid personalized restoration. However, there are several
distinctions. We use a diffusion-based personalized generative
prior, while [4], [30], [31], [33] use feedforward architectures.
MyStyle [6] uses a GAN-based generative prior, but it requires
around 100 images for effective personalization and strict
spatial alignment of the face landmarks within each image.
In contrast, our method only needs 10 reference images and
has no restriction on the alignment. This leads to higher quality
restoration with less restrictions for our proposed method.

C. Personalized Diffusion Models

Diffusion models [35]–[37] have notably excelled in the
area of generating images from text (T2I) [7], [8], [38] and
many other visual computing tasks [39]. Recent advancements
in this field involve customization of these established models
through fine-tuning, aiming to enhance features like control-
lability, customization, or to cater to specific applications.
One approach to customization involves modifying the T2I
model itself [2], [40]–[42] or the text embedding process [10],
[43], [44], using selected images. This allows to personalize
the generation of images based on a particular subject or
style, driven by textual input. More recently, neurons in a
model specific to a concept can be identified and manipulated
specifically to enable sparse personalization [45], methods for
fast personalization of the model have been proposed [46]–
[48], and approaches for multi-subject personalization [49],
[50]. Alternatively, other methods involve adapting the T2I
model to introduce new conditioning factors. These changes
are either for purposes of image modification [51]–[53] or for
generating more controlled images [54], [55].

In this work, we tackle the task of contextual customization,
where the goal is to fine-tune a prior within the context of a
system, preserving the distinct roles of each component within
the system, while customizing the image prior to a specific
subject.

III. PRELIMINARIES

A. Personalizing Text-Guided Diffusion Models

Our method relies on multimodal text-guided image gener-
ation models. Given a text prompt p, text-guided denoising
diffusion models learn to sequentially denoise samples of
random noise ϵ ∼ N (0, I) into samples of images x. During
training, a neural network ϵθ(xt,p) is trained to predict ϵ from
a noisy version of the image xt = αtx + σtϵ, where αt and
σt are noise scheduling parameters, and t refers to the time
step in the diffusion process.

A common way to sample the image at inference time
is classifier-free guidance [56], that sums up a conditional
instance of the model together with an unconditional one:

Gθ(xt,p) = (1 + w)ϵθ(xt,p)− wϵθ(xt,∅), (1)

where w is a guidance scale, ∅ represents a null-text prompt.
These conditional and unconditional branches aim to strike
a balance between prompt fidelity and diversity within the
generated images.

Recent work by [2] introduced the ability to personalize
text-guided diffusion models using a few reference images of
a subject. This personalization process involves fine-tuning the
model around a text anchor p (typically structured as a “rare
token”+“class noun”, such as ’a [v] dog’), enabling subject
identity embedding within the diffusion prior that can be
activated when p appears in the conditioning during inference.
In practice, the weights, θ, are optimized by minimizing

LDB = Ex,p,ϵ,ϵ′,t

[
||Gθ(xt,p)− ϵ||22+||Gθ(x

pr
t ,p

pr)− ϵ′||22
]
,

(2)
where xpr

t is drawn from a separate prior preservation dataset,
and ppr is the prior prompt (“class noun”, such as ’a dog’).
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Fig. 3: High-level overview. Our approach aims to personalize a blind face restoration system (left) in two steps: (1) text-
anchored personalization of the generative prior G within the context of the system, and (2) retargeting the encoder E in
the presence of the personalized prior in Gp, in an identity-agnostic manner. Then, at inference time (right), our system can
generate output images with high fidelity to the individual appearing in the reference images, while retaining the perceptual
fidelity to the degraded input.

(a) Input (b) Seed 1 (c) Seed 2 (d) Seed 3

Fig. 4: Identity variation. Given a fixed degraded input image,
it can be seen that different seeds (i.e. different input noises)
applied to [1] result in images with different identities.

This structure allows the optimization to revolve around a text
pivot p, without ruining the general prior of the model [57].

We define the personalization operator of a generative model
by

MW = P{M,W}, (3)

where P{·} is the operator, and MW is the personalized
version of a model M which is fine-tuned with W as a pivot.
That is, the first argument of the operator is finetuned while
keeping the second argument fixed. In our case, this pivot can
be either a text prompt or a network.

IV. METHOD

In this section, we outline our method for personalizing
guided diffusion models. We begin by describing the design
and operation of the diffusion-guided blind image restoration
system. Next, we present our dual-pivot tuning technique,
which involves two key steps: first, employing text-based fine-
tuning to embed identity-specific information within diffusion
priors, and second, addressing the necessity of model-centric
pivoting to adjust the guiding image encoder with the inte-
grated personalized priors. Finally, we show how the inherent

characteristics of our method can be utilized to accelerate the
per-identity fine-tuning process and to significantly reduce the
cost of the process.

A. Diffusion-Guided Image Restoration

Recent advances in blind face image restoration [1], [9] have
attempted to utilize a pre-trained diffusion model (such as Sta-
ble Diffusion [7]) as generative prior to guide the restoration
process. Typically, these pipelines contain a diffusion-guided
image restoration step that consist of two components: (1) A
general image prior in the form of a text-to-image diffusion
model G(·), that encodes the manifold of natural images and
(2) an encoder E(·), that captures context information from
the degraded image and guides the generation process such
that it maintains high fidelity to the visual attributes of the
degraded image. Guiding the diffusion process with spatial
features extracted from an image encoder E is a common way
to control the diffusion processes [54]. It should be noted that
in the case of blind restoration, the general prior G plays a key
role in dictating the identity of the person. As demonstrated
in Fig. 4, for a given degraded input image (namely, fixed set
of guiding features that are extracted from E), different seeds
in the input of G(·), lead to different identities in the output.

Our goal in this work is to personalize the general prior
G such that the restored face maintains high fidelity to the
identity of the individual without degrading the integrity of the
general image prior and the distinct roles of each component
in the system.

We consider a general setting, where the encoder E(·) takes
a low-quality image ILQ as an input and provides guidance
for the diffusion model. Note that ILQ could be a degraded
image [9], or the output of a preliminary restoration model,
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like in [1]. In the context of the blind image restoration setting,
we will use the following notation:

B = {G(ϵ,∅),E(ILQ)}, (4)

where B represents the blind restoration system with the two
aforementioned components. In this blind restoration setting,
the text conditioning is null, denoted by ∅ (as in [1]).

B. Dual-Pivot Tuning

A high-level summary of our two-step approach is illus-
trated in Fig. 3.

a) Step 1: In-Context Textual Pivoting: Given a pivot
text prompt p of the form “A [v] face”, personalization of a
generative prior in a restoration system can be performed by
fine-tuning G with p independently of the blind restoration
system and plug it back into the framework, namely,

Bp = {Gp,E}, (5)

where Gp = P{G, p}. However, as demonstrated in Fig. 2
(c), if we do so, the personalized prior is being completely
ignored by the system. Alternatively, we can personalize G
within the context of B, while pivoting around the prompt
p, such that it leverages the conditioning cues from E during
fine-tuning, namely,

Bp = P{BG, p}, (6)

where BG denotes that we modify the weights of G within
the context of B (i.e. modify the generator within the blind
restoration system). We refer to this as in-context pivoting.
While restoration is better comparing to the decoupled (out-
of-context) fine-tuning, the restored images are unable to
completely imbibe identity information and fidelity cues, when
compared to our final result, as demonstrated in Fig. 9.

The occurrence of this issue can be attributed to the initial
training of E, where it was coupled with the unconditional
branch of G. As a result, E cannot exert influence on the
conditional branch of G, which is responsible for contribut-
ing personalized features around the anchor prompt p. We
therefore find that for effective personalization of face image
restoration, text-based pivoting alone is not enough, and that
E must be fine-tuned in conjunction with Gp.

b) Step 2: Model-based Pivoting: We introduce a second
fine-tuning step for E within the context of Gp. Essentially,
our objective is to fine-tune E in a way that it relinquishes
identity cues to the personalized prior in Gp while focusing
on other detail cues. In this scenario, our pivot is not a text but
a network (Gp), which we keep fixed during the optimization
process to align the encoder with the personalized prior.

To preserve the identity-agnostic role of the guiding en-
coder, we intentionally aim to avoid personalizing it. One
approach to achieve this is by updating E across different
individuals, allowing it to adapt to the conditional branch of
Gp while remaining agnostic to fine-grained identity features,
which should be determined by Gp, as demonstrated in Fig. 4.
This identity-agnostic retargeting concept bears similarities to
the Prior Preservation loss [2] in the context of pivotal-tuning

around a model. We denote this process as identity-agnostic
guidance preservation.

Starting with Gp, we perform fine-tuning on E as follows:

Bp = P{BE = {Gp,E},Gp}, (7)

where BE represents the restoration system (with the em-
bedded personalized prior), and we are now optimizing the
weights of E. The encoder obtained as a result of this step is
denoted as Epr.

Combining these two steps is crucial. The textual pivot
allows for identity injection without altering the base model’s
prior in the context of the restoration system, while fine-tuning
around the network pivot results in better use of the guiding
encoder and greater fidelity to the input image features.

Note that the unique identifier [v] is specifically associated
with the generative prior G and forms an essential part of the
in-context personalization of G. Therefore, during ID-agnostic
training, the identifier [v] that is associated with the identity
of the input image is passed to G. This is distinct from the
identity-agnostic guidance preservation, which operates on the
encoder E and is conditioned with a null text prompt. Using an
identity-specific identifier for G is crucial because the encoder
E is required to remain identity-agnostic. This conditioning
structure is fundamental to the effectiveness of our approach
in preserving both identity-specific features and generalized
restoration capabilities.

C. Speeding-Up Dual-Pivot Tuning

In general, personalization of generative models is a time-
consuming process. We next suggest steps to significantly
reduce (by about 2x) fine-tuning time in each of the two
phases.

a) Speeding up textual pivoting.: The presence of both
conditional and unconditional branches within our inference
pipeline offers an additional unique opportunity. We noticed
that the initial restoration steps do not rely as much on identity,
as these steps mainly focus on coarse geometry and semantic
detail [44]. Therefore, during inference, we observe that high-
quality, identity-preserving restoration can be achieved even
when the initial denoising steps are only unconditional, using
a guidance scale of 0, followed by text-guided denoising for
later steps with a non-zero guidance scale. Formally,

ϵt+1 =Bp(xt,∅) | 0 ≤ t < γ,

ϵt+1 = w ·Bp(xt, p)+(1− w)Bp(xt,∅) | γ ≤ t < 1.0,
(8)

where γ denotes the fraction of denoising steps for which
unconditional inference is carried out. Note that in the above
expression, we denote the initial noise to be at t = 0 and the
restored image to be at t = 1.

We demonstrate this in Fig. 5, where we restore the de-
graded image (a) unconditionally for the first γ = 50%
of the steps and conditionally for the remaining steps (c).
Despite this, we find the restored image being faithful to the
reference image (d), as well as to the restored image obtained
through conditional restoration for all the steps (b). γ = 50%
is identified experimentally. This observation enables us to
reduce personalization time for the textual pivoting by about
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(a) (b) (c) (d)

Fig. 5: Unconditional Sampling. During inference, identity-
preserved restoration of a degraded image (a) is possible even
with unconditional denoising for initial steps, followed by
conditional denoising for remaining steps (c). We find this to
be consistent with the reference image (d), in terms of identity
and faithfulness to original image, as well as with the result
through conditional restoration for all steps (b).

2x since the denoiser no longer needs to be personalized for
higher noise levels (since the unconditional model suffices for
those), and can, therefore, be trained with a focus on relatively
lower noise levels.

b) Speeding up model-based pivoting.: We find that in-
context textual pivoting (Section IV-B) is effective towards
speeding up model-based pivoting. With the personalization of
the generative prior being in-context in our proposed pipeline,
model-based pivoting is feasible with half the number of
finetuning steps, when compared with an out-of-context textual
pivoting pipeline (Fig. 9). A more detailed runtime analysis for
the speedup may be found in Table II.

Moreover, we have observed that the personalized prior in
Gp is sufficiently strong, such that even when performing the
model-based pivoting of E on a single individual, Epr captures
general cues and can be shared across various identities, as
demonstrated in Fig. 6. This is critical from a training time
perspective: the fine-tuned encoder, once performed on one
identity, can be shared across models for different identities.
Therefore, the only personalization step needed for each new
identity is the textual pivoting.

While it might initially appear that ID-agnostic guidance
preservation is weaker in the context of Figure 6 since training
is performed on only one identity, this is not the case.
As demonstrated in Figure 6(b) and (c), even through this
seemingly constrained training process, the encoder success-
fully maintains ID-agnostic properties. It can be used across
multiple identities while retaining strong image restoration ca-
pabilities. This indicates that our structured, two-step pipeline
allows training of an ID-agnostic guidance encoder without
requiring images from diverse identities. This substantially
increases the practical utility of our method, for example in
scenarios where privacy concerns might limit the availability
of training images across diverse identities.

These observations allow us to efficiently save a significant
amount of computing time, ultimately resulting in substantial
cost reductions, especially when dealing with a large-scale
user base. The final method we run for our experiments
includes these critical speedup steps, including the single
identity model-based pivoting of E.

(a) Input (b) E, same id. (c) E, diff. id. (d) ID Refer-
ence

Fig. 6: Finetuning E on different identities. We show that
for the model-based pivot tuning E can be finetuned on the
same identity (b), as well as on different identities as in the
inset (c), while providing similar plausible restorations with
respect to the identity in the reference image (d).

V. EXPERIMENTS

In this section, we highlight the superiority of the proposed
method to prior reference-based and blind image restoration
methods.

A. Training Process and Datasets

We use images from CelebRef-HQ dataset [5] to person-
alize the model; more specifically, this dataset has multiple
512× 512 images of the same person. Our method is trained
on synthetic data that covers a wide range of degradation
similar to the real world. We use DiffBIR [1] as our base blind
image restoration framework. In this setting, the generative
prior G is Stable Diffusion v2.1 [7], while the encoder E
is initialized as the image-conditional encoder from DiffBIR.
Specific details on training, architecture and so on may be
found in Appendix C.

We follow the same second-order degradation strategy as
[1]. At each stage we first convolve the image with a blur
kernel kσ , and downsample with a scale factor r. Following
that, additive noise nδ is added, and finally the image is JPEG-
compressed with quality q. Formally, a single stage can be
described as

xd = [(x⊛ kσ) ↓r +nδ]JPEGq , (9)

where ⊛ is the convolution operator. The final image is
obtained after applying Eq. (9) twice. We refer to [1] for more
details on the degradation process.

a) Test data.: We use two sources of data: (1) CelebRef-
HQ test set, (2) Google searched images including low-quality
and high-quality images from the same person. Real-world
degradations are an arbitrary unknown combination of image
compression, low resolution, image blur and noise.

B. Comparisons with other strategies

We show the comparisons of our personalization strategy
to the alternative strategies in Fig. 2. As can be seen, the
proposed strategy maximizes identity preservation through
the restoration process, while comparison strategies, namely
personalizing when pivoting only on the text condition (c) or
personalizing when pivoting only on the generative model both
are unable to effectively incorporate identity while retaining
image fidelity.
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(a) DEGRADED IMAGE (b) ASFFNET [60] (c) DMDNET [5] (d) DIFFBIR [1] (e) OURS (f) GROUND TRUTH

Fig. 7: Results on synthetically degraded images. A considerable gap in identity preservation can be observed between our
proposed method and alternative baselines. Identity preservation can be observed in terms of overall geometric features, as well
as attributes: eye shape (row 1), nose and nostril shape (row 2), eye color (row 3). Please also explore the webpage included
with the supplementary material for an interactive side-by-side comparison, a better visualization of the differences.

TABLE I: Fidelity and identity metrics. The proposed
method generates images with high fidelity, while showing
superior identity retention, when personalized on 10 images.
We compare along PSNR, SSIM, LPIPS and FID as fidelity
metrics, while ArcFace similarity serves as an identity metric.
We highlight the best, second-best and third-best performing
methods.

Method PSNR (dB) SSIM LPIPS FID ArcFace (Identity)

GFPGAN [25] 23.67 0.5783 0.1041 59.76 0.75
CodeFormer [22] 23.98 0.5726 0.0920 58.50 0.76
DPS [58] 23.16 0.5373 0.2049 107.40 0.42
DiffFace [59] 23.05 0.5288 0.3743 201.31 0.54
MyStyle [6] 17.24 0.5265 0.2615 103.23 0.68
DR2 [28] 21.56 0.5433 0.2132 113.60 0.40
ASFFNet [60] 11.21 0.4042 0.3070 186.54 0.55
DMDNet [5] 11.33 0.4010 0.3209 176.19 0.61
DiffBIR [1] 24.27 0.5797 0.1031 65.44 0.76

Ours 23.72 0.5532 0.0949 57.88 0.88

C. Comparisons with SOTA methods

We perform qualitative and quantitative comparisons. For
reference-based methods, we choose ASFFNet [4], DMDNet
[5], MyStyle [6], as well as DiffFace [59], a face swapping-
based method; all methods use 10 reference images for guid-
ance. For blind face image restoration, we chose DiffBIR [1],
DR2 [28], GFP-GAN [25], CodeFormer [22] and diffusion
posterior sampling (DPS) [58]. Please find qualitative com-
parison with MyStyle, DR2, GFP-GAN, CodeFormer in
the supplement, and comparisons with DiffFace [59] and
DPS [58] in the Supplement.

a) Comparison on synthetic degradations: Fig. 7 (and
additional results in the supplement) show qualitative com-

parisons on the CelebRef-HQ test set subject to the synthetic
degradations described above. It is noteworthy that ASFFNet
and DMDNet are trained on perfectly aligned face images.
During test time, highly accurate face alignment is required
to eliminate domain gap. As a result, the results of both
methods are underwhelming. On the other hand, diffusion-
based methods (DiffBIR and ours) possess a generative prior
trained on huge amounts of unaligned faces and can generalize
well on test images without specific alignment. MyStyle [6],
which relies on a personalized generative prior, shows very
good identity retention, however the restored images lack
fidelity to the input image. Blind restoration techniques, such
as CodeFormer, GFP-GAN and DiffBIR lead to significant
identity drifts. Compared to DiffBIR, our method achieves
better fidelity to the ground truth face.

We also report quantitative results on our CelebRef-HQ test
set in Table I. We report PSNR and SSIM as full-reference
metrics, in addition to LPIPS and FID score. To quantify
the identity disparity from the ground truth image, we use
ArcFace [61] similarity. ASFFNet and DMDNet cannot restore
the images effectively, resulting in low scores on all the
metrics. Same is the case with DPS [58] and DiffFace [59]:
both perform poorly across both reconstruction fidelity and
identity retention metrics. MyStyle results in poor quantitative
performance, even though the qualitative results show restored
images with high fidelity. This can be attributed to the lack
of faithfulness to the input image. Blind restoration methods
(GFP-GAN, CodeFormer, DR2 and DiffBIR) show varying
degrees of performance, however DiffBIR is found to perform
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(a) DEGRADED IMAGE (b) ASFFNET [60] (c) DMDNET [5] (d) DIFFBIR [1] (e) OURS (f) ID. REFERENCE

Fig. 8: Results on real degraded images. Even in images in the wild with real, unknown degradation kernels, our proposed
method is superior to the baselines in terms of identity preservation and perceptual quality.

the best among these. Our method achieves higher identity
preservation, at the cost of slightly lower PSNR and SSIM to
DiffBIR. While DiffBIR tends to generate smooth restorations
to which PSNR and SSIM are not sensitive, our method injects
realistic high-frequency details that may not be perfectly
aligned with the ground truth image, thus decreasing the
scores. Therefore, though PSNR and SSIM may be misleading
metrics for the task at hand [62], the proposed method is
still able to provide comparable quantitative fidelity, while
retaining identity better. That being said, LPIPS and FID score,
being metrics that favor high-frequency details, emphasize
overall superiority of the proposed method. Specifically, across
FID, LPIPS and ArcFace metrics, the proposed approach is
state-of-the-art, both in terms of reconstruction fidelity as well
as in terms of identity preservation.

b) User study.: We also conduct a user study (refer to
Appendix A for detailed analysis). First, we analyze the benefit
of our personalized prior towards perceived identity retention
while being faithful to the input image. The proposed method
is predominantly found to be superior, when compared with
unconditional diffusion-based image restoration [1], reference-
based image restoration [22], and GAN-based personaliza-
tion [6]. Second, we surprisingly note that our personalized
restoration method is found to improve identity-independent
general image quality as well, when compared to the non-
personalized diffusion-based restoration [1].

c) Comparison on real degradations.: Fig. 8 (and addi-
tional results in the supplement) show the performance of each
method on real-world images. For each test image, the model
is personalized with 10 reference images of the same identity
from CelebRef-HQ. We also provide a reference image in
column (f) for better evaluation of the identity preservation.
This set of experiments show that our personalized model
generalizes well to real-world degraded images. In all cases,
our method achieves significantly better image quality than
ASFFNet DMDNet, GFP-GAN and CodeFormer, and pre-
serves identity better than DiFFBIR. When compared with
MyStyle, in this operating regime the proposed method is

Degraded Image (a) In-Context Tex-
tual Pivoting

(b) + Model-based
Pivoting

ID. Reference (c) Out-of-Context
Textual Pivoting

(d) + Model-based
Pivoting

Fig. 9: Ablation: understanding dual-pivot tuning. (a) In-
context textual pivoting alone enables a certain level of identity
injection, although the details can be further improved. (b)
Model-based pivoting improves the identity and perceptual
quality (our method). (c) In contrast, out-of-context textual
pivoting causes noticeable identity drifts. (d) Applying model-
based pivoting in this setting also improves the results. The
effects is much more pronounced, bridging the performance
gap with the top row.

considerably more faithful to the input degraded image, while
being able to retain identity. Please find more qualitative
results in the supplement.

d) Training time analysis: Using the speedup strategies
proposed in Section IV-C, we find that both textual and model-
based pivoting steps see a twofold improvement in person-
alization time. In addition, we find that the model pivoting
step can be extended to other identities in a zero-shot manner,
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TABLE II: Personalization speedup. Both textual and model-
based pivoting show speedup capabilities.

Step Runtime (w/out speedup) Runtime (w/ speedup)

Textual pivoting 63.5 min 31.8 min
Model pivoting 21.6 min 10.5 min

TABLE III: Inference time. The proposed method has compa-
rable inference time to existing diffusion-based methods, with
the added benefits of personalization.

Method DifFace [59] DR2 [28] DiffBIR [1] Ours

Runtime (s) 4.3 0.7 6.8 6.8

saving personalization time (Section IV-C). We note that the
training is only once per subject: inference time per image
is much faster, as shown in Table III, showing comparable
runtimes as other diffusion-based methods while allowing
strong personalization. While this is already reasonable for
applications such as photo album restoration, improvements in
these aspects will be beneficial: while this first work focuses
on quality, follow-up works may focus on efficiency.

e) Ablation: Understanding Dual-Pivot Tuning: We find
the proposed dual-pivot tuning approach to be a general tech-
nique for personalization of guided diffusion models. Fig. 9
qualitatively explores the benefits of this method. Specifically
in our case, we find that alternate strategies for personalization
exist. The first is our chosen strategy: in-context textual pivot-
ing (Fig. 9(a)), which injects identity information, followed
by model-based pivoting (Fig. 9(b)), which enables better
utilization of the general restoration prior to get high-fidelity
restored images. The alternate approach involves beginning
with out-of-context textual pivoting (where G is personalized
outside the context of B). As shown in Fig. 9(c), this leads to
significant gap in identity. However, post model-based pivoting

Face Swapping

Input Induced blur Face swap Reference
Text-guided Editing

Deg. Inp. No edit “smile” “blue eyes”

Fig. 10: Editing applications: face swapping text-guided
editing. The upper row shows the application of face swap-
ping. The swapped image shows structural similarity to the in-
put (background, hair pose expression), while identity cues are
drawn from the reference. The lower row shows performance
on text-guided editing. We show two examples: enhancing the
smile with the prompt “smile”, and changing the eye color,
with the prompt “blue eyes”.

(a) Face Swap (b) Editing

Ours

DiffFace

Ours Ours

“smile” “blue eyes”

InstructPix2Pix InstructPix2Pix

“smile” “blue eyes”

Fig. 11: Comparing editing performance against exist-
ing methods. We compare the face swap task against Diff-
Face [59], while we compare the text-guided editing task
against InstructPix2Pix [52]. Across both the applications, we
can see that the proposed method is qualitatively comparable
or better than existing tailor-made methods for these tasks.

(Fig. 9(d)), this is resolved, leading to high fidelity, identity
preserving image restoration. The dual-pivot tuning approach
successfully personalized the diffusion model in both these
settings. We find the in-context textual pivoting to enable faster
personalization in terms of the the model-based pivoting step.

f) Additional Applications: Fig. 10 shows applications
such as face swapping (top row) and text-guided editing
(bottom row). We blur the source image to obscure identity.
Then, for face swapping we restore using the personalized
prior for a new identity. In the text-guided editing application
we utilize the semantic prior of the diffusion model for text-
conditional editing. For example, with the term “smiling” as
part of the prompt, we see a smile in the expression of the
individual in the output image. In addition, with the phrase
“blue eyes”, we see a clear variation in the eye color.

We also compare performance of editing tasks against
specialized baselines for said tasks. While quantitative com-
parison is challenging, we show a qualitative analysis through
Figure 11. For the face swap task, we compare with Diff-
Face [59]. As shown in Figure 11(a), the proposed method is
comparable in terms of image quality swapped for face, while
being more faithful to the input image (Figure 10 left), as well
as to to the swapped identity (Figure 10 right). Additionally,
identifying details such as eye color are better retained in our
method.

For the text-guided image editing task, we compare with
InstructPix2Pix [52]. Note that [52] is unable to operate on
degraded images: we first use our method to restore the image
(without any text editing prompt), which is then used as input
to [52]. In contrast, our method applies directly to degraded
images, and concurretly restores and edits the image. As can be
seen, for both the prompts, our method leads to more realistic
results, while enabling accurate editing control and remaining
faithful to the input image.
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Reference Images

Degraded Input Ours Ground Truth

Fig. 12: A visual description of limitations of the proposed
method. Since most of the reference training images for this
particular identity do not show teeth, the restored image has
a strong inductive bias towards not having teeth, even though
the ground truth has clearly visible upper teeth.

VI. CONCLUSION

We propose a technique for personalizing a diffusion prior
for face image restoration, leveraging the capabilities of few-
shot fine-tuning based on a set of example images. Our
method achieves high fidelity to both the input image and
the identity of the person. We conduct extensive experiments
to demonstrate the superiority of our method in comparison
to various state-of-the-art alternatives.

a) Limitations and Future Work: While we make the
first step in using personalized diffusion priors for face image
restoration, despite the proposed speed-up techniques proposed
for dual-pivot tuning, it remains a computationally expensive
fine-tuning process for each identity. An important research
direction is to inject few-shot identity in a feed-forward
way, which we leave for future work. Further, while our
personalized model improves fidelity to the identity, general
fidelity and quality are fundamentally limited by the under-
lying restoration method. Additionally, potential limitations
native to personalization [2] on a small set of images can
find their way to our method, like overfitting towards features
such as open eyes and smiling mouth if most of the training
images show this and the input degraded image is ambiguous
in this aspect (Figure 12 highlights this for the example
where reference images do not show teeth and therefore the
image restoration also removes teeth). Even though improving
general quality is not the focus of this work, we believe
contextual personalization holds promise towards improved
performance in both image quality and identity fidelity.
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APPENDIX A
ADDITIONAL QUANTITATIVE ANALYSIS

a) Additional notes on Tab. 1: An interesting result to
note is the performance of [28]. We note that DR2 allows for
tunable parameters (N, τ) selection to tradeoff restoration with

og dps diffface Ours

Chris 1_3

Forest 1_3

GT

Brie 0_2

(a) Inp. (b) DPS (c) DiffFace (d) Ours (e) GT

Fig. 13: Additional qualitative comparisons against Diff-
Face [59] and Diffusion Posterior Sampling [58]. The
proposed method is qualitatively superior across all examples,
both in terms of image fidelity, as well as identity retention.
Note aspects such as the eye color in row 1, and the mole on
the upper left cheek in row 3, which is only retained through
our method. Zoom for clearer comparison.

fidelity to the original image. We choose (N, τ) = (16, 35) as
we find this combination able to restore the degradations in
our synthetic images. However, this does come at a cost of
fidelity to the input - this is reflected by low fidelity as well
as identity metrics for DR2.

Another interesting observation is the performance of
MyStyle [6] in terms of identity retention. We see that the
ArcFace metric for MyStyle is similar to other blind restora-
tion techniques. This is a somewhat surprising observation,
since MyStyle uses a personalized prior for restoration. This
may be explained as follows: while MyStyle indeed shows
strong identity retention (as evidenced by qualitative results
in Fig. 18, 20, 22, 23 in the supplementary material), the
method is unable to retain fidelity (in terms of color, lighting,
texture, makeup and even pose). All these factors can affect
the perceived identity of the image from the perspective of
the ArcFace metric, leading the this anomaly. On the other
hand, the ArcFace metric is a valid comparison of identity
retention with all other comparison methods, since they are
able to retain fidelity with the input degraded image.

b) Additional Qualitative Baselines: Figure 13 shows
two additional qualitative baselines: diffusion posterior sam-
pling [58], a blind restoration method, and DiffFace [59],
a face swapping-based method. We find that that proposed
method is significantly superior, qualitatively, over these meth-
ods, both in terms of fidelity of restoration and identity
retention. Both comparison methods particularly struggle with
heavy degradations (rows 1 and 3), where identifying features
such as eye color (row 1) and upper left cheek mole (row 3)
are only maintained by our proposed method.

c) User study: We conduct a user study as a measure
of perceptual quality and comparison with prior methods.
We focus on two questions as part of the study: (a) can
personalization help improve perceived image quality as well?,
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and (b) how does our method compare with prior methods
in terms of identity-aware restoration. We perform our study
across 30 participants. The survey consists of randomized,
anonymized options that they can choose amongst. Figs. 14
and 16 (a) show the exact guidelines provided as part of the
study. For part (a), image quality, we compare against the
base unconditional restoration method (DiffBIR [1]), with the
objective being to choose the better-quality image, irrespective
of identity. For this case, we compare across 11 image pairs,
containing both real and synthetic degradations. For part (b),
identity-aware restoration, we compare with three methods:
(i) DMDNet [5] (better-performing method both qualitatively
and quantitatively when compared with ASFFNet [60]); (ii)
MyStyle [6], a personalized generative prior; (iii) DiffBIR [1],
a unconditional diffusion-based method. For this case, we
compare across 10 image sets, consists of synthetically de-
graded images.

We begin with discussing the first part of the user study:
effect of personalization on identity-independent perceived
image quality. Fig. 14 shows the results of this part of the
study. We observe that across the 30 study participants, a clear
majority of the participants indicate the quality improvement
that arises out of personalization. This is an unexpected
result, and we explore this further by analyzing two specific
instances, in Fig. 15. The upper row shows a case where
the users are broadly split between the candidate options.
The unconditional method provides a restored image with
detailed facial features such as wrinkles, while the proposed
method provides less of such detail, with stronger identity
cues. Both images look viable as natural images with good
quality. However, the lower row in Fig. 15 shows an instance
where the study participants almost unanimously prefer our
method. The reason for this is evident: the baselines method
has considerable artifacts, especially near the eyes, while
our method leads to a good quality, realistic face image.
Through these observations, we can understand the effect
of our personalization method on identity-independent image
quality. In cases where the unconditional comparison method
is able to perform, our personalized model remains stable and
provides realistic looking faces. However, in cases where the
comparison method fails, such as with high degradations, our
method, throgh the strength of the identity prior, still results in
realistic restored images. A combination of these two factors
leads to superior perceived identity-independent image quality.

We next analyze the second part of the user study: the
perceived strength of our identity-aware image restoration.
Fig. 16 shows the results of this part of the study. We see
that, perhaps per expectation, participants rate our method
as the predominant favorite in terms of identity-aware image
restoration, while retaining faithfulness to the input degraded
image. This can be seen across our various qualitative results
and speaks to the strength and reliability of our personalized
prior across identities and degradations. However, an inter-
esting insight is the relative placement of the comparison
methods. Specifically, study participants rate DiffBIR [1] to
be the second-best method, despite not retaining identity, as
a result of its strong correlation to the input degraded image.
On the other hand, MyStyle [6], while having a strong identity

(a) Example survey question (b) Survey Result

Fig. 14: User study: effect of personalization on perceived
image quality. When asked to choose the image with better
perceived quality, we find users predominantly choosing the
images with our personalized restoration. Our method is
indicated in blue, while DiffBIR [1] is shown in red, in the
pie chart.

(a) Survey Result (quality) (b) DiffBIR [1] (c) Ours

Fig. 15: Two specific real degradation restorations, from
the lens of image quality. The upper row shows a case
where respondent opinion is split - DiffBIR provides specific
detail like wrinkles, while our approach provides structure
and identity. The lower row shows a case with unanimous
favor towards our method. This arises from specific artifacts
in the DiffBIR output, which is avoided by having a strong
personalized prior. Our method is indicated in blue, while
DiffBIR [1] is shown in red, in the pie charts.

prior, is the third-best preferred method on average, as a result
of it not being faithful to the input image. That is, perceptually,
faithfulness to the input degraded image is given a higher
priority by participants, despite the study guidelines placing
both identity and faithfulness to input image at the same
priority.

APPENDIX B
ADDITIONAL OBSERVATIONS

a) Dealing with Heavy Degradations: Fig. 17 shows a
potentially interesting use setting for the proposed method.
Namely, in the case of very heavy degradations, multiple
passes through the restoration model may be performed. As
seen in the figure, (b) is able to obtain coarse details as well as
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(a) Example survey question (b) Survey Result

Fig. 16: User study: the effect of personalization on
perceived image identity retention. When asked to choose
the image with the better-looking image, while prioritizing
identity and faithfulness to input degraded image, we find users
predominantly choosing the images with our personalized
restoration. Our method is indicated in blue, DiffBIR [1] is
shown in yellow, MyStyle [6] is shown in red, and DMD-
Net [5] is shown in green in the pie chart.

(a) (b) (c) (d)

Fig. 17: Heavy degradation restoration. Given a highly
degraded image (a), a first pass (b) through our restoration
pipeline provides a coarse estimate that pulls the image closer
to the input domain of the model. The second pass (c) injects
texture and identity information, leading to a better restored
estimate with respect to the ground truth (d).

shape and strcuture information. Through a second pass, (c) is
able to improve of texutre and detail, in addtion to obtaining
greater identity injection, leading to a better restored image
than (b).

b) The Effect of Classifier Free Guidance: Fig. 18 shows
an ablation study on the effect of classifier-free guidance scale.
As can be seen, the parameter allows for trading off image
sharpness with realism, allowing for pereference-based tuning.
Specifically, we find that increasing the CFG scale makes
the restored images sharper, at the cost of realism. We also
note in the main paper that the proposed method does not
require conditional inference across all denoising steps. That
is, to enable personalized restoration, we find that even though
initial denoising steps are carried out unconditionally, effective
personalized restoration is possible.

(a) Deg. inp. (b) CFG=2.0 (c) CFG=4.0 (d) CFG=6.0

Fig. 18: Effect of classifier free guidance (CFG). Sweeping
across CFG enables a fidelity-diversity tradeoff, also manifest-
ing as a tradeoff between image sharpness with realism (higher
the CFG, higher the sharpness). This provides a degree of user
control.

In Table IV, we show quantitative results. We note that
traditional fidelity metrics worsen as the CFG is increased.
This is consistent with our other observations, where the
unconditional method (DiffBIR) shows slightly better perfor-
mance on these metrics. As we increase the CFG, we move
farther from the unconditional model and therefore see these
effects. In terms of identity, we see a small reduction with
increased CFG. As we increase the CFG, the sharpness of the
restored image increases and may lead it to look unrealistic.
Overall, in terms of tradional metrics, a lower CFG values
is optimal. However, visually, the CFG can serve as a useful
control knob for restored image style and quality. That being
said, since we rely on existing CFG methods, the proposed
method inherits the known limitations of CFG. For example,
a very high CFG may lead to reduced realism and consistency
with the input image or style.

APPENDIX C
IMPLEMENTATION DETAILS

We use the DiffBIR [1] model as the base architecture. The
generator G is a Stable Diffusion v2.1 [7] as in [1], while
the encoder E is initialized from [1]. Training is done using
the AdamW optimizer [63]. We use a batch size of 1. Textual
pivoting is trained with a learning rate of 8e − 6 for 2500
steps, and model-based pivoting is trained with a learning rate
of 5e−5 for 800 steps. The personalized token used for textual
pivoting is kept as ‘sks’. All experiments are conducted using
an NVIDA V100 GPU. Please check included code for further
specific details.

APPENDIX D
ETHICAL CONSIDERATIONS

The use of generative models, while being extremely helpful
for challenging tasks such as identity-aware image restoration,
can also potentially have harmful effects. Specifically, gen-
erative models can be used for immoral tasks. In our case,
applications that we discussed, such as face swapping as well
as text-guided editing, can lead to generation of fake images,
that may be used without the consent of the person whose
image it is. We strongly condemn such and any other harmful
use cases of the proposed method.
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TABLE IV: Ablation: effect of classifier-free guidance scale
on personalized image restoration. We compare along PSNR
and SSIM as fidelity metrics, while ArcFace similarity serves
as an identity metric.

CFG PSNR (dB) SSIM ArcFace (Identity)

1.0 24.78 0.70 0.90
2.0 24.54 0.69 0.89
3.0 24.17 0.68 0.87
4.0 23.73 0.67 0.85
5.0 23.12 0.65 0.84
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