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Abstract—We consider the problem of client-server localiza-
tion, where edge device users communicate visual data with the
service provider for locating oneself against a pre-built 3D map.
This localization paradigm is a crucial component for location-
based services in AR/VR or mobile applications, as it is not
trivial to store large-scale 3D maps and process fast localiza-
tion on resource-limited edge devices. Nevertheless, conventional
client-server localization systems possess numerous challenges
in computational efficiency, robustness, and privacy-preservation
during data transmission. Qur work aims to jointly solve these
challenges with a localization pipeline based on event cameras.
By using event cameras, our system consumes low energy and
maintains small memory bandwidth. Then during localization,
we propose applying event-to-image conversion and leverage
mature image-based localization, which achieves robustness even
in low-light or fast-moving scenes. To further enhance privacy
protection, we introduce privacy protection techniques at two
levels. Network level protection aims to hide the entire user’s
view in private scenes using a novel split inference approach,
while sensor level protection aims to hide sensitive user details
such as faces with light-weight filtering. Both methods involve
small client-side computation and localization performance loss,
while significantly mitigating the feeling of insecurity as revealed
in our user study. We thus project our method to serve as a
building block for practical location-based services using event
cameras. Project page including the code is available through
this link: https://82magnolia.github.io/event_localization/,

Index Terms—Event cameras, visual localization, camera pose
estimation, privacy-preserving computer vision

I. INTRODUCTION

ISUAL localization is a versatile localization method

widely used in AR/VR, which aims to find the camera
pose with respect to a pre-built 3D map solely using images.
Due to the limited amount of compute and storage available
in AR/VR devices, conventional systems employ client-server
localization where edge device (e.g. smartphones, AR glasses)
users transmit visual information to the service provider for
localization [1[]-[3[]. While this enables effective camera pose
estimation by reducing the user-side compute burden, privacy
concerns arise due to the nature of image capture [4]], [5]. As
shown in Figure [IH(a), users of the localization service may
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Fig. 1. Overview of our approach. (a) Client-server localization introduces
privacy concerns. (b) Event cameras have numerous hardware benefits for
localization. (¢) We achieve privacy-preserving localization by applying
protection techniques tailored to events during events pre-processing (sensor
level) and event-to-image conversion (network level) (top), where the results
are then used for localization (bottom).

be concerned with sharing the current view with the service
provider. Further concerns can be raised by uninformed people
who are observed by the user and captured in the localization
process. Along with privacy concerns, localization systems for
mobile devices demand for robust performance in a wide range
of conditions including fast motion or dark scenes.

Event cameras are visual sensors that only record brightness
changes 6], [7] as a stream of events, which have the
potential to provide robust, efficient, and privacy-preserving
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visual localization. As shown in Figure [T}(b), event cameras
have a high temporal resolution and dynamic range [8]], which
are crucial for robust localization in challenging scenarios such
as low lighting or fast camera motion. Further, as the power
consumption is far lower than normal cameras [6] and the
form factor is becoming smaller due to recent advancements in
manufacturing [9]—[12]], these sensors are highly favorable for
machine vision tasks in AR/VR. From a privacy perspective,
the sensors only capture a fraction of visual information
as shown in Figure [I| and thus an average person cannot
confidently identify people solely from events. Nevertheless,
this comes at the expense of relatively unstable visual features
compared to normal cameras, making direct localization from
events difficult.

We propose an event-based visual localization method that
can perform robust localization while preserving privacy.
For localization, we employ event-to-image conversion which
allows leveraging mature, powerful image-based localization
methods [[13]], [14] on captured events. Our key observation
is that despite the information loss during event capture,
the converted images contain robust and salient image fea-
tures sufficient for localization. The resulting method achieves
localization accuracy comparable with an intensity camera
in normal scenarios, but significantly better for fast camera
motion or low lighting, where localization using normal cam-
eras typically fails. In addition, by combining event-to-image
conversion with image-based localization which effectively re-
duces the domain gap between events and images, our method
can outperform existing event-based localization methods. To
make our solution amenable to mobile devices, the client is
only responsible for a light-weight capture and computation
process, while the service provider performs the computation-
ally expensive conversion [15]-[21]] and localization steps.

We then design two levels of privacy protection tailored for
event cameras, as shown in Figure[T}(c). On the network level,
we observe that naively offloading the computation to the
server can lead to privacy breaches. To address such concerns,
we propose to split neural network inference with a novel re-
training procedure for neural networks that prevents the service
provider from reconstructing what the users see. This pro-
tection scheme targets users who are willing to use location-
based services in private spaces (e.g. apartment rooms), where
protecting the entire user view should be solicited. On the
sensor level, we propose novel filtering methods based on the
spatiotemporal volume of events that preserve important static
landmarks for localization, while blurring facial landmarks
without explicit detection. This process targets wider use
cases in both private and public spaces: it aims to reduce
concerns about being recorded by wearables or mobile devices.
The filters are designed to be light-weight which makes it
possible to implement such protection on the sensor directly.
In practice, since the techniques aim to protect the privacy
of different targets (users and observed people), they can be
applied jointly.

We design a rigorous evaluation procedure to assess our
method on a wide range of localization scenarios involving
moving people, low-lighting, or fast camera motion. Specifi-
cally, we create two new datasets called EvRooms and EvHu-
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Fig. 2. User study results on our privacy protection method. The insecurity
scores range between 1 and 5, where higher score indicates higher insecurity.
(a) We make an initial measurement on how users feel about being captured
using normal cameras in various scenarios. (b) Then, we query on event
cameras by sequentially showing raw events, event-to-image reconstructions,
and privacy protection results.

mans, and introduce protocols for holistically evaluating pri-
vacy protection and localization performance. We also conduct
a user study to examine how real users perceive our privacy
protection schemes. Experiments show that our approach
effectively balances localization performance with privacy
protection. We first show that, without privacy protection,
the proposed event-to-image approach outperforms existing
event-based methods that do not rely on image reconstruc-
tion [22]]-[24]. We then demonstrate that the proposed privacy
preservation techniques efficiently protect user privacy without
significantly reducing the localization accuracy. Notably, in the
user study, both levels of privacy protection have shown to
alleviate privacy concerns of real users, as seen in Figure[2] We
will publicly release the dataset along with the accompanying
code for benchmarking, which we expect to foster future
research in event-based visual localization. To summarize, our
key contributions are:
o Proposing the first event-driven effort for robust and
private localization targeting mobile environments.
« Novel network level privacy protection for mitigating
users’ concerns.
« Novel sensor level privacy protection for relieving ob-
served people’s concerns.
By synergistically combining event cameras with robust local-
ization and privacy protection, we expect our method to serve
as a practical building block for spatial perception systems in
mobile environments.

II. RELATED WORK

1) Event-Based Visual Localization: Due to the high dy-
namic range and small motion blur, event cameras have
been widely studied for visual odometry (VO) or SLAM
tasks involving sequential pose estimation between temporally
adjacent events [25]-[34]]. However, re-localizing an event
camera with respect to a pre-built 3D map, namely event-based
visual localization, is a fairly understudied problem. Unlike the
VO or SLAM setup, here poses should be estimated amidst
large viewpoint differences between the query events and
reference images in the 3D map [13]], [35]. In general, despite
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recent developments in learning-based feature descriptors for
events [36[]-[39]], approaches that directly use the raw event
measurements usually perform inferior to the counterpart using
normal images [31]], [40], [41]]. This is due to the instability of
visual features in events compared to normal images and the
lack of large scale training data [42[]-[44]. Prior works perform
direct camera pose estimation using neural networks [24],
[40], which requires per-scene training and are inferior to
structure-based methods in performance [45]—[47]. Structure-
based methods leverage correspondences in 2D and 3D by
comparing feature descriptors [13]], [[14]], [35[], [48]-[50]. Due
to decades of research in image feature descriptors [49], [51]],
structure-based methods are known to perform stable localiza-
tion. We leverage event-to-image conversion to combine the
mature structure-based paradigm with event cameras, leading
to robust localization under challenging conditions.

2) Privacy-Preserving Machine Vision: Machine vision ap-
plications in networked environments are subject to privacy
breaches as they utilize images captured from the clients [4],
[0, [52]]. Recent works target privacy protection in split infer-
ence scenarios where the costly neural network computation is
shared between the client and server [53]-[62]. Such attempts
can be viewed as instances of a broader problem in cryptogra-
phy called Secure Multiparty Computation (SMC) [63]], where
the goal is to find methods for parties to compute a function (in
this case a neural network) over their inputs while hiding the
input values from each other. Unlike prior works that mainly
target classification tasks where a reduced amount of infor-
mation is sent to the server, we tackle privacy-preservation
for reconstruction which requires sending all the information
to reconstruct a full image. This is a more challenging and
complex task as it additionally demands hiding the outputs of
the computation (i.e., reconstructed images) from the server,
which differs from the standard SMC setup that mainly focuses
on hiding the inputs.

Prior works in privacy-preserving visual localization also
focus on this aspect, where existing methods suggest lifting
the 2D / 3D keypoints to lines [2f, [[64]-[|67]], or training a
new set of feature descriptors hiding sensitive details [1f], [3]],
[4]], [68], [69]]. Another direction of recent works try to encrypt
the visual data in the sensor level by incorporating specially
designed optics [70]—[73[. For example [70] designs a phase
mask applicable on the camera lens that hides the sensitive
scene content and trains a neural network that decodes the
phase mask outputs to get depth map predictions. Inspired
by such works, we propose network level privacy protection
that prevents possible server-side attacks, and sensor-level
protection that hides sensitive visual details in event data.

III. EVENT-BASED LOCALIZATION PIPELINE

Given a short stream of events recorded by an event camera,
our method aims to find the 6DoF camera pose within a
3D map as shown in Figure [T}(c). Event cameras are visual
sensors that track brightness changes as a stream of events,
E = {e; = (4,9, ti,0i)}, where e; indicates the brightness
change of polarity p; € {+1,—1} at pixel location (z;,y;)
and timestamp t¢;. Compared to conventional image sensors,

the outputs are sparse and asynchronous, and thus consumes
less memory bandwidth and energy which makes the sensors
amenable to mobile vision applications.

Our localization method combines event-to-image conver-
sion with image-based localization. We incorporate such a
design choice as our method tackles the previously under-
explored problem of finding the event camera pose with
respect to a pre-built 3D map, also known as visual re-
localization [74|]. The problem is challenging due to large
viewpoint differences compared to SLAM or odometry sce-
narios [32]—[34]. As a result, existing methods directly using
events [24], [36]-[40] often exhibit unstable re-localization
performance. Our approach can perform highly accurate local-
ization even in difficult scenarios (fast motion, low lighting)
for image-based methods [35]], [49] by jointly leveraging the
sensor-level benefits of events and the maturity of image-based
localization.

Given an input event stream &, let E denote the event voxel
grid [15], [18], [75]] obtained by taking weighted sums of
event polarities within spatio-temporal bins. Event-to-image
conversion methods [15]], [[16], [18], [[19], [76] take the event
voxels as input and produce images using neural networks,
namely Fo(E) = I where © denotes the neural network
parameters.

A. Structure-Based Localization

Figure [T}(c) shows our localization process. In the mapping
stage, a 3D map representaion is built from event streams
captured for a scene: S.={&1,...,En}, with each stream
being a spatiotemporal volume of events spanning a short time.
In the query stage, a user-captured query stream &, is matched
against the map to localize the user. To build the map, we first
convert the reference events S, into images S;={I,...,In}.
Then we run an off-the-shelf structure-from-motion pipeline
COLMAP [77] on S;. The result is a map containing 3D
keypoints and 6DoF pose-annotated reference images.

Next, we extract global features vectors using
NetVLAD [48] for each pose-annotated reference image
I; in the 3D map for candidate pose selection. In the query
stage, we reconstruct an image I, from the query event
stream &, and compute the L2 distances between the query
and reference image features. We select the top-K nearest
poses which serve as candidate poses for further refinement.

Finally, we refine the pose by first performing local feature
matching [35]], [49] between the query and selected reference
images. We count the number of matches found for each
query-reference pair and choose the reference view I, with
the largest number of matches. Then we obtain the refined
6DoF pose by retrieving the 3D points visible from I, and
performing PnP-RANSAC [78]], [79] between the 2D points
in I, and retrieved 3D points.

By leveraging event-to-image conversion, we can effectively
deploy powerful image-based localization methods on events.
Nevertheless, for high-quality image recovery the conversion
solicits repetitive neural network inferences [15[], [[19]], which
can be costly for edge devices. This necessitates the trans-
mission of visual information from edge devices to service
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Fig. 3. Split inference setup for network level privacy protection. To save
compute while hiding sensitive visual information, the original network
weights are split (left) and only the costly intermediate part (Fé) is shared
with the service provider. Then, the compute is distributed between the user
and service provider: the user performs the light-weight frontal and lateral
network inference and the service provider performs the heavy part (right).

providers, where we propose various techniques for preserving
privacy in Section

IV. PRIVACY-PRESERVING LOCALIZATION OVERVIEW

We propose two levels of privacy protection during informa-
tion sharing between the user and service provider: network-
and sensor-level protection. Network-level privacy protec-
tion targets localization in private scenes (e.g. apartments,
corporate offices), where the user would want to completely
hide what they are looking at. Sensor-level privacy protec-
tion targets a broader range of applications and focuses on
hiding non-structural details such as facial regions with small
additional computation. Note that similar to prior works in
privacy-preserving visual localization [1f], [3]], [4], we assume
an honest-but-curious service provider [80] that faithfully
provides the required computation (e.g., global/local feature
extraction for localization) but is curious and may attempt to
extract the client’s visual information from the shared data.
Therefore, the service provider considered in our work cannot
secretly gain access to data that the client has not agreed to
share (e.g., raw event data), and as a result, our work focuses
on secure information sharing during client-server localization.

V. NETWORK-LEVEL PRIVACY PROTECTION

Network level privacy protection hides the user’s view from
the service provider in private spaces. As shown in Figure [3]
we suggest splitting the event-to-image conversion process be-
tween the service provider and user, and strategies for prevent-
ing possible server-side attacks. The motivation is twofold: (i)
offloading the entire conversion to the server enables revealing
the user’s view, and (ii) naively splitting inference can still
have the server decode the shared intermediate representations.
Below we retain our focus on making the event-to-image
conversion process privacy-preserving. Once the images are
securely reconstructed, it is also possible to apply existing
privacy-preserving visual localization methods [1], [3[, [64]
for further protection.

A. Split Inference Setup

The split inference process operates in three steps, as
summarized in Figure 3] Prior to inference, the users di-
vide the event-to-image conversion network to disjoint parts
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Fig. 4. Network level privacy protection targeting users in private scenes.
(a) We identify three possible attacks from the service provider. Case 1:
Frontal layer inversion attempts to decode the intermediate activations with a
learned network G'g. Case 2: Swapping weight attack combines the shared
network weights with the publicly available weights (gray) to obtain image
reconstructions. Case 3: Reverse engineering operates similarly but with
network weights trained on the server side aiming to reverse-engineer the
unshared network weights. For defense, we propose per-scene re-training (top)
using adversarial losses (middle) and noise-infused event voxels (bottom).
(b) In the resulting network level protection, users deploy a privately-trained
reconstruction network Fg, and share the intermediate part with the server
during inference.

F),F3,F3, where © denotes publicly available network
weights that are pre-trained on datasets containing general
scenes [81]. Fé contains the majority of the inference com-
putation and is the only shared part with the service provider.
During inference, (i) the user performs inference on Fé, (i)
the result is sent to the service provider to perform Fé, and (iii)
the user retrieves the result to finally perform F. Since the
frontal and rear inference is done on-device, it may appear at
first glance that this conversion is privacy preserving. However,
similar to observations in prior work on split inference [56],
[57]], we identify three possible server-side attacks to decode
user information and propose corresponding defense strategies.

B. Possible Server-Side Attacks and Defenses

1) Frontal Layer Inversion Attacks: First, the service
provider could train an inversion network Gg that takes the
frontal layer activations and regresses the original event voxel.
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After that an event-to-image conversion network could be used
to obtain an image reconstruction. If the split inference is
performed naively with publicly available pre-trained network
weights © [15]], [20], then Gg could be easily trained using
conventional event camera datasets [42], [43]. To prevent the
attack we propose to have the user to quickly re-train a new
event-to-image conversion network ©’ using events collected
in the private scene. Since the frontal part of the newly trained
network £, is unknown to the server, this can prevent training
a performant inversion network GG¢. Note that re-training
is a one-time operation for each private scene, and can
potentially be shared between users residing in the same
scene. Further, the process does not require large event data
as the re-trained network only operates in the private scene.
Typically, re-training can be done using approximately one
minute of event camera data, which takes 0.5 hours with a
commodity GPU and 3 hours with a CPU. We provide a
detailed analysis on the computational cost of the re-training
process in Appendix [C-C}

2) Swapping Weight Attacks: Second, the service provider
may use the publicly available network weights © and extract
reconstructions from the frontal layer activations. For example,
since the client needs to offload its computation and share the
private weights FZ, to the server, the service provider can
combine it with the public weights for the succeeding layers,
i.e., run F3 o F3, on top of the shared frontal layer activations
FJ,(E) to reconstruct an image. Note as in Figure (a.2), o'
and © can be combined at different layers to get an image
reconstruction.

To prevent such attacks, we propose to perform re-training
with two losses L=Lecon+Lagv, Where Liecon, Lagy are the
reconstruction and adversarial losses respectively. Formally,
the reconstruction loss is given as follows,

Lrecon :d(F@(E),F@I(E)), (1)

where d(-,-) is the LPIPS distance [[82]] and E is the event
voxel. While the reconstruction loss ensures similar image
conversion quality to be obtained with the new weights ©’, the
adversarial loss discourages high-quality reconstruction when
layers are swapped. As shown in Figure [4}(a.2) right half, the
loss is defined as the sharpness of the image reconstructions
made by swapping parts of the new network layers with the
original weights,

Loay = s(Fg 0 F3, 0 F&,(E)) + s(F3 o F3 0 F&/(E)), (2)

where s(-) is the gradient magnitude computed by applying
Sobel filters [83] on the reconstructions. Empirically, we found
imposing the two losses in Equation [T] and [2]to be sufficient
for preventing swapping weight attacks.

3) Reverse Engineering Attacks: Finally, the service
provider may exploit the shared intermediate weights Fg,
and attempt to reverse-engineer the unknown parts of the
network. Specifically, the service provider could perform a re-
training on its own using publicly available event data and
the loss functions from Equation [T and [] but with the
intermediate layer weights initialized to F3,. After this, the
service provider could apply the reverse-engineered weight on
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Fig. 5. Sensor-level privacy protection. (a) We attenuate temporally inconsis-
tent regions via median filtering and curvy regions via maximum reflection
filtering. (b) While the filtering operations can preserve consistent motion or
linear regions, the operations will deliberately scramble the values at other
regions, leading to blurry reconstructions. (c) To reduce artifacts, the averaged
voxels Fayg=(Fmed+Erer)/2 are selectively blended with the original voxels.
Here we use a binary mask U that selects averaged voxels Fayg only when
voxel values are over a threshold.

the frontal layer activations to obtain an image reconstruction,
similar to swapping weight attacks.

For defense we propose to add a noise watermark Fi s
during the client-side re-training process, as shown in Figure 4}
(a.3) right half. The noise watermark is fixed for each private
scene and unknown to the service provider. The modified
training objectives are as follows,

Liecon = d(FG(E)7F@’ (E))

; 3)
_ 3 2 1 /7 3 2 1 (17
Luw = s(FgoFgoFe (E)) + s(FgoFgoFg (E)),

4)

where F = E + Foise 18 the noise-infused event voxel. We
implement the noise watermark Fis as a voxel grid with
each voxels randomly sampled from the normal distribution
N(0,1). During inference, as shown in Figure (b) the user
computes Fg, from the noise-infused voxel grid F and sends
it to the server, following the steps from Section [V-A] As the
noise watermark is unknown to the service provider, it obfus-
cates the results from user-side re-training and makes reverse
engineering attacks to fail. We validate the effectiveness of
network level privacy protection in Section [VII-C}
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VI. SENSOR-LEVEL PRIVACY PROTECTION

Sensor-level privacy protection aims to hide sensitive details
of nearby people, such as faces, observed by the user in
both private and public scenes. While network-level protection
can also hide scene details from the service provider, it does
not address the concerns on data being abused by the user
locally. Sensor-level privacy protection takes the raw event
voxels as input and removes temporally inconsistent or curvy
regions that are common on faces, while effectively keeping
static, straight structure that is important for localization. Thus
the protection scheme can balance privacy protection with
localization performance. Further, this light-weight processing
can potentially be implemented on the sensor directly such
that user applications have no access to the raw events.

1) Median Filtering: As shown in Figure E]-(a), median
filtering perturbs voxel entries with temporally inconsistent
intensity or motion, which are common in events from faces.
Given a voxel grid E€ERB*XHXW where B denotes the number
of temporal bins, we replace each voxel E(I,m,n) with the
median value from E(I—k;:l4+ky, m,n) where k; is half the
temporal window size. This is based on the intuition that the
event accumulation from regions with constant appearance
either monotonically increase or decrease, where a detailed
exposition is given in Appendix On the other hand,
dynamic entities including human faces deform over time and
the resulting voxel regions show irregularities in the temporal
domain, which lead to low quality image reconstructions after
filtering.

2) Maximum-Reflection Filtering: We further propose
maximum-reflection filtering to attenuate curvy regions that
often correspond to facial landmarks. For each voxel
E(l,m,n) we first find the location (I, m*,n*) that attains
the maximum event count within the spatial neighborhood
|E(l,m—kgs:m+ks,n—ksn+ks)|, where kg is half the spatial
window size. We then replace E(I,m,n) as the voxel value
at the reflected location with respect to (I, m*,n*), namely
E(1,2m*—m,2n*—n). The maximum-reflection filtering pre-
serves event accumulation near lines while replacing other
regions with arbitrary values. The intuition for this operation is
that event accumulations near step functions are symmetrical
with respect to the local maximum, while those on the two
sides of a curved line are asymmetrical, as shown in Figure Sp.
Although lines from real-world scenes are not strictly a step
function, we find that in practice the maximum-reflection
filtering can well-preserve events near lines while attenuating
other regions including faces.

Notice that both median filtering and maximum-reflection
filtering are unaware of whether there is a face or not (which
can be computationally expensive to detect): they blur pixels
that likely correspond to a face. While not explicitly detecting
faces, such a design choice enables our method to be readily
implemented in the sensor level. Further, despite trading off
image reconstruction quality, sensor level protection incurs
only a small localization performance drop. This is further
verified in Section [VI[=D|

3) Voxel Blending: For voxel grid regions with an insuffi-
cient amount of accumulations, the filtering process can incur
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Fig. 6. Visualization of 3D maps, events, images, and event-to-image
conversions from EvRooms. While the dataset contains challenging scenarios
such as fast camera motion or low lighting, event cameras offer stable visual
cues for robust localization.

artifacts as the signal-to-noise ratio is low. Therefore, we blend
the filtered voxels with the original event voxel using binary
thresholding as depicted in Figure B}(c). To elaborate, the
binary mask U € REXH*W i5 defined as follows,

vt.mm = {

where pu,0 is the mean and standard deviation of
the temporally-summed event accumulations, Fs(m,n) =
> 1 [E(l,m,n)|. Then, the blended voxel is given as

Emed + Emax
2

where Fped, EFmax denote the median and maximum-reflection
filtered voxels respectively. The resulting blended voxel Ejpjena
is then fed to the event-to-image conversion network following
the localization pipeline described in Section

1 if Es(m,n)>pu+o
0 otherwise,

&)

Epiena = U - ( )+(1-0)-E, (6)

VII. EXPERIMENTS

We first share user study results on our event-based localiza-
tion pipeline (Section [VII-A)), then validate the performance of
our approach using event-to-image conversion (Section [VII-B),
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and finally show the quantitative and qualitative analysis of
privacy protection (Sections [VII-D). We use three
datasets for evaluation: DAVIS240C [84], EvRooms, and
EvHumans. EvRooms is a newly collected dataset to evaluate
the robustness of event-based localization algorithms amidst
challenging external conditions. The dataset is captured in
20 scenes and divided into recordings containing fast camera
motion (EvRoomsF) and low lighting (EvRooms"), where
qualitative samples of the 3D structure-from-motion (SfM)
maps and images are shown in Figure [ EvHumans is an-
other newly collected dataset for evaluating privacy-preserving
localization amidst moving people. The dataset is captured
with 22 volunteers moving in 12 scenes. All three datasets are
captured using the DAVIS346 [85] camera.

Furthermore, we use an RTX 2080 GPU and an Intel
Core 17-7500U CPU. For event-to-image conversion, we adopt
E2VID [15], which is a conversion method widely used in
event-based vision applications [86], [87]. Unless specified
otherwise, we use K =3 candidate poses for refinement in our
localization pipeline from Section For results reporting
accuracy, a prediction is considered correct if the translation
error is below 0.1 m and the rotation error is below 5.0°.
All translation and rotation error values are median values,
following [[13].

A. User Study

Before we conduct a detailed empirical analysis on each
component of our localization pipeline, we share user study
results to illustrate how people would feel about our approach.
We request 39 volunteers to answer a survey that assesses
how insecure people feel about various capturing scenarios,
where the insecurity is scored from 1 to 5 with larger scores
indicating higher insecurity. As shown in Figure [2] the survey
first makes an assessment of being captured with normal
cameras for various situations such as tourist spots and CCTV.
Then the participants are asked about their feeling of insecurity
with event cameras after seeing (1) raw event measurements,
(2) image reconstructions from events, and (3) image recon-
structions after network/sensor level protection. We share the
full survey along with the detailed answers of the subjects in
the Appendix

In the initial assessment from Figure [2}(a) people have vary-
ing levels of insecurity depending on the capturing scenario.
The averaged insecurity scores provide a rough translation
cue for interpreting the scores obtained for event cameras and
privacy protections. In Figure [2}(b), the subjects first give a
low insecurity score when they see the raw events but increase
their score once they observe that image reconstruction is
possible. The scores drop after people observe the sensor
level protection results, to a level roughly equivalent to ‘being
captured on CCTV / friend’s camera’. Furthermore, the scores
are even lower for network level protection, as the scene
content is completely hidden. The results show that our method
can indeed alleviate the concerns presented by users of AR/VR
services and observed people.

TABLE I
LOCALIZATION EVALUATION AGAINST EXISTING METHODS.
Method Description ‘ t-error (m)  R-error (°)  Acc.
Direct PoseNet [46] 0.15 15.94 0.05
SP-LSTM [40 0.19 20.30 0.03
AECRN (23] 0.15 15.16 0.05
Structure-Based ~ Binary Event Image [22] 0.07 3.77 0.54
Timestamp Image [88] 0.06 3.18 0.58
Complementary Recon. Filter [89] 0.11 6.42 0.33
Linear Inverse Recon. [90 0.14 10.39 0.22
Ours Event-to-Image Conversion | 0.04 2.29 0.69
(a) Event-Based Localization Methods Comparison
Dataset Split Method ‘ t-error (m)  R-error (°)  Acc.
Normal Intensity Camera 0.04 1.77 0.72
Event Camera 0.05 2.00 0.73
Low Lighting Intensity Camera 0.26 10.90 0.26
Event Camera 0.05 2.53 0.68
Fast Motion Intensity Camera 0.18 6.25 0.26
Event Camera 0.05 1.82 0.72

(b) Event Cam. vs. Intensity Cam., Using Image-Based Localization

Method ‘ t-error (m)  R-error (°)  Acc.
No Protection 0.04 2.29 0.69
Network Level Protection 0.05 2.58 0.64
Sensor Level Protection 0.05 2.50 0.66
Joint Protection 0.06 2.88 0.62

(c) Localization Evaluation Including Joint Protection

B. Localization Performance Analysis

1) Event-Based Localization Comparison: We use the
DAVIS240C dataset [84] for evaluation, and consider seven
baselines: direct methods (PoseNet [46], SP-LSTM [40]], AE-
CRN [23]]), and structure-based methods taking as input vari-
ous event representations (binary event image [22], timestamp
image [88]]) or light-weight image reconstructions from events
(complementary reconstruction filter [89], linear inverse recon-
struction [90]). Note the light-weight reconstruction methods
rely on simple optimization techniques for converting events
to images, which entail small computation costs but often
exhibit inferior reconstruction quality compared to learning
based methods as used in our approach [[15], [20].

Table [I1(a) shows the localization results of our method
and the baselines. All structure-based methods outperform
direct methods, as the pose refinement step using PnP-
RANSAC [79]], [91]] enables accurate localization. Among the
structure-based methods, our method outperforms the event
representation baselines [22]], [88]] as the event-to-image con-
version mitigates the domain gap and enables leveraging stable
image feature descriptors [48]], [49]. A similar trend is present
when comparing against light-weight image reconstruction
baselines [89]], [90], where the low fidelity of these meth-
ods hinders visual feature matching, ultimately deteriorating
localization performance. Therefore, our design choice of
incorporating event-to-image conversion is crucial for robust
performance to handle a variety of scenarios including fast
camera motion and low lighting.

2) Image-Based Localization Comparison: To motivate our
focus on event cameras, we implement an exemplary image-
based localization method by replacing the input modality in
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Fig. 7. Qualitative results of privacy protection. With protection, scene details in (a) and facial information in (b) are significantly removed.

our pipeline from events to intensity images that are captured
as a parallel stream by DAVIS cameras. We create three splits
from DAVIS240C and EvRooms: normal, low lighting,
and fast motion, where details on data preparation are
deferred to Appendix [A]

Table [IH(b) compares localization results under various
settings. The performance of the two methods are on par
in the normal split, as intensity camera-based localization
can confidently extract good global/local features in normal
conditions. However, the performance gap largely increases in
the 1ow lighting, and fast motion splits, as the motion
blur and low exposure make feature extraction difficult. Due
to the high dynamic range and temporal resolution of event
cameras, our method can perform robust localization even in
these challenging conditions.

3) Localization with Privacy Protection: We further eval-
uate the localization performance while using our privacy
protection methods in the DAVIS240C dataset [84]. Note as
shown in Figure [@}(b) network-level protection is activated
with the re-trained network for image reconstruction in our
localization pipeline. As shown in Table [[H(c), the localization
accuracy only drops mildly both for sensor and network
level, which proves that our protection schemes can effectively
balance secure image reconstruction with stable localization.

While network level protection hides the visual content from
the service provider, observed people in private spaces may
still feel uncomfortable about being captured and stored on
mobile devices. Table [[}(c) shows that only a small perfor-
mance decrease occurs even when both levels of protection
are applied. Thus our method can address privacy concerns
from both users and observed people without significantly
sacrificing the utility of localization.

C. Network Level Privacy Preservation Evaluation

We use six scenes from the DAVIS240C dataset to evaluate
network level privacy protection. For each scene, we re-train
an event-to-image conversion network following Section [V]
The re-training is quickly done using Adam [92] with learning
rate 10~* and batch size 2 for 10 epochs. Then for each
trained model, we perform frontal layer inversion and reverse
engineering attacks, where the models are trained using events
generated from MS-COCO following [15]]. From the
E2VID architecture we use the first two layers as the
frontal part (F},), the last two layers as the rear part (Fg,),
and the rest as the middle part (F2,).

1) Attack Protection Assessment: We first assess how our
method can prevent possible attacks from the service provider.
For each attack, we simulate the procedure from Section [V] by
performing image reconstruction where the frontal part of the
inference uses the client’s network Fig/ and the latter part uses
the service provider’s network. Note that weight swapping is
done at various network locations, and we report the averaged
image difference between the attacks and the reconstructions
from the original network Flg.

As shown in Table [l the reconstruction quality (i.e.,
deviation from the original network inference) after network
level protection is low for all attack scenarios, proving that
privacy is protected. Simply per-scene re-training with random
initialization offers a defense against frontal layer inversion
attacks, which can be inferred from large image deviations.
Adversarial loss (Equation [) plays a key role in blocking
swapping weight attacks (‘Ours’ vs ‘Ours w/o Adversarial
Loss’). For reverse-engineering attacks, a large similarity gap
occurs from applying noise watermarking (‘Ours’ vs ‘Ours w/o
Noise Watermarking’) which indicates the crucial role of this
procedure for preventing the attack. We show visualizations
of the attacks in Figure |Z|-(a), where all attacks fail after
protection.
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TABLE II
RECONSTRUCTION QUALITY (MAE) OF POSSIBLE ATTACKS USING
NETWORK LEVEL PRIVACY PRESERVATION, WHERE PER-SCENE TRAINING
IS PERFORMED. NOTE ‘VANILLA RE-TRAINING’ REFERS TO USING
RECONSTRUCTION LOSS Lggcon ONLY.

Attack Type | Frontal Layer ~ Swapping Reverse
Method Inversion Weight Engineering
Vanilla Re-training 0.3524 0.4613 0.2165
Ours w/o Adversarial Loss 0.4212 0.4746 0.3517

0.4472
0.4947

0.9760
0.9587

0.3237
0.4415

Ours w/o Noise Watermark
Ours (Re-training + Adv. Loss + Noise Wtm.)

2) Computational Efficiency and Transmission Bandwidth
Analysis: In addition to privacy preservation, network level
protection also reduces the computational burden of running
the entire event-to-image conversion on-device. This is similar
in spirit to conventional client-server localization systems [/1]],
[3[l, [64]] that perform light-weight compute on the client
side and offload majority of the computation to the server.
To assess the computational efficiency, we first compare the
event-to-image conversion runtime on CPU, GPU, and our
method that performs splitting between the two. Here the
CPU and GPU are used to model the edge device and service
provider respectively. The runtime of our method is 0.08s,
which is significantly lower than only using CPU (0.82s), and
comparable to the case only using GPU (0.01s). To further
explain such a speedup, we measure the number of floating
point operations (FLOPS) for computing each part of the
event-to-image conversion network. Computing intermediate
parts of the conversion network (Fg): 13.82 GFLOPS) is much
larger than the frontal and latter parts (Fg: 0.02 GFLOPS,
F3: 1.14 GFLOPS), which suggests that computation can be
largely reduced by offloading computations of the intermediate
network to the server. While these results may differ from the
actual characteristics of edge devices and service providers,
our method can efficiently distribute the computation and
reduce the burden on the edge device side.

We finally analyze the bandwidth usage of transferring inter-
mediate network outputs. The average size of the intermediate
network outputs to be transferred back and forth between the
client and server is 0.75 MB. This is comparable to the size of
the data being transferred in recent split inference works [56]]
(1.27 MB per network inference), and would consume only
a small bandwidth from a commodity 100 MBps WiFi or
20 MBps 4G / 100 MBps 5G cellular network. Therefore,
transferring intermediate network outputs will not be a large
bottleneck compared to the actual neural network computation.
Note that in practice, the split network inference only needs to
be performed sparsely for re-localization and camera tracking
after re-localization can be performed using more light-weight
event-based methods [28]].

D. Sensor Level Privacy Protection Evaluation

We use the EvHumans dataset to assess sensor level protec-
tion in face blurring and localization. In all experiments, we
set the half spatial/temporal window size as k;=23, k;=13.

1) Face Blurring Assessment: We examine face blurring in
terms of low-level image characteristics and high-level seman-
tics. For evaluation, we generate 9,755 image reconstruction

TABLE III
EVALUATION ON SENSOR LEVEL PROTECTION.
Method \ t-error  R-error  Acc. \ # of Faces  Sharpness  Re-ID Acc.
No Protection 0.04 0.99 0.84 1034 0.0956 0.9387
w/o Blending 0.06 1.61 0.64 106 0.0286 0.4670
w/o Max Reflection 0.05 117 0.77 354 0.0483 0.5708
w/o Median Filtering 0.05 1.23 0.75 231 0.0461 0.5613
Ours ‘ 0.05 1.28 0.73 ‘ 192 0.0475 0.5377

(a) Localization and Face Protection Evaluation

Region | PSNR () SSIM (}) MAE (1)
Face 18.1620 0.3572 0.1974
Background | 21.1243 0.6677 0.1391

(b) Reconstruction Quality of Faces and Background

pairs from the event streams with/without sensor level pro-
tection. Also, we use the publicly available FaceNet [93]] and
DeepFace [94] libraries for face detection and description.

Table summarizes the evaluation results. For low-level
image analysis, in Table[[TI-(a) we report the average sharpness
of the faces detected from the reconstructed images. To ensure
fair comparison, we first run face detection on the non-filtered
image reconstruction and use the detection results to crop
both filtered/non-filtered versions. The sharpness largely drops
after filtering, which indicates that our sensor level protection
can effectively blur facial landmarks. Table [[II}(b) further
supports this claim, where we measure the image similarity
between the two image reconstructions separately for face and
background regions. The similarity metrics are much higher
for background regions, meaning that our method can keep
important localization cues ample in the background while
blurring out faces. Some exemplary results are shown in
Figure [7}(b), where the faces are blurred out from filtering
while the background features remain much less intact.

For high-level analysis, Table [[TT}(a) reports the face detec-
tion and grouped face re-identification results. We apply a face
detection algorithm [95] on the image reconstructions, where
the number of detected faces largely decreases after filtering.
We further analyze how the filtering obfuscates facial features
with grouped face re-identification. In this task, we first divide
the faces of volunteers in EvHumans to disjoint groups and
apply face re-identification [96] on the detected faces to check
whether it belongs to a certain group or not. Additional details
regarding the task are explained in the Appendix Similar
to face detection, re-identification accuracy largely drops after
filtering, indicating the efficacy of our method to obfuscate
facial semantics.

2) Localization Evaluation and Ablation Study: We evalu-
ate localization while using sensor level protection, where we
pass the filtered voxels to our main localization pipeline. As
shown in Table [[l}(a), only a small drop in accuracy occurs.
While attenuating facial features, sensor level protection can
preserve important features for localization.

We finally perform an ablation study on the key components
of sensor level protection. As shown in Table [} (a), using the
two filters makes an optimal trade-off between privacy protec-
tion and localization performance. If we ablate the median or
max reflection filters, the number of detected faces increases
which indicates that the faces are less protected. However, if
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we ablate voxel blending, the localization accuracy drastically
decreases. Each component in the sensor level protection is
necessary for effective privacy-preserving localization.

VIII. CONCLUSION

We propose a robust event-based localization algorithm
that can simultaneously protect user privacy. Our method
exploits event-to-image conversion to adapt structure-based
localization on event cameras for robust localization. To pro-
tect privacy during the conversion, we propose network and
sensor level protection. Network level protection aims to hide
the entire view for users in private scenes, whereas sensor
level protection targets hiding facial landmarks. Both levels of
protection are light-weight, and our experiments show that the
protections incur only small performance drops in localization.
We thus expect our method to be used as a practical pipeline
for event-based machine vision systems.

A. Limitations and Future Work

While we present a first attempt in privacy-preserving event-
based localization targeting mobile applications, we acknowl-
edge a number of limitations that solicit future work.

a) Privacy Protection under a More Capable Adversary:
Our network-level protection assumes an honest-but-curious
service provider, that only has access to information that the
client has agreed to share. However, our protection scheme
may fail for a more capable adversary. To elaborate, if the
service provider gains access to the frontal and lateral neural
network weights which are originally kept secretly to the
client, then the service provider can run the full inference
pipeline to decode the shared neural network activations. In
addition, if the service provider can access the raw event data
captured by the client, it can run event-to-image conversion on
the event data to decode the client’s original view. We expect
leveraging recent developments in event data encryption [97]]-
[99] to offer protection against such attacks.

b) Handling Other Biometric Features for Sensor-Level
Protection: While our sensor-level protection can efficiently
blur pixels that likely correspond to a face, we acknowledge
that other biometric features such as gait or body shapes may
still disclose sensitive information [[100]—[104]. Note this has
also been reported by several participants in the user study
from Section While increasing the level of blurring
can hide other biometric features, this will come at the cost
of lower localization performance. Efficient biometric obfus-
cation methods that preserve the localization performance can
be a promising future direction.

c) Performance Analysis on Real Mobile Hardware: In
the experiments section, we measured various runtime and
bandwidth characteristics of our method through software-
level simulations. However, experiments using real mobile
hardware will better illustrate the computational requirements
of the proposed method. While such experiments are more dif-
ficult to conduct as they require designing and manufacturing
real mobile hardware, we acknowledge their importance for
accurately measuring real-world feasibility.

d) Computational Burden for Re-training: Despite the
re-training procedure only requiring small amounts of event
camera data, we expect the following directions to further
reducing the re-training burden. First, a single user can retrain
the neural network and share it with other users in the private
scene. This way, only one user needs to conduct neural
network retraining. Alternatively, multiple users in the private
scene may train a single neural network in a distributed
manner [105[, [[106], which may reduce the training burden
for each user.

e) Hardware Cost of Event Cameras: Despite recent
efforts from manufacturers [[11f], [[12], we acknowledge that
many event cameras available for purchase today are of
relatively high cost compared to conventional RGB cameras.
However, the sensors are increasingly being deployed with a
small form factor for mobile setups such as eye tracking in
AR/VR devices [9], [[10], [107] or smartphone cameras [[108]].
Note the pixel size of modern event cameras (4 ~ 5um) [[109]]
is comparable to that of commodity CMOS image sensors
1.7 ~ 3.45pm) [110]. Finally, we expect that due to
economies of scale, larger utilization of these sensors will
reduce the overall cost in the future.
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APPENDIX A
DATASET DETAILS

A. DAVIS240C

We use six scenes from DAVIS240C [84]] for local-
ization evaluation in Section Specifically, we use
dynamic_6DoF, poster_6DoF, boxes_6DoF, hdr_boxes,
hdr_poster, and office_zigzag for evaluation. Among
these scenes hdr_boxes and hdr_poster are recorded under
low light conditions.

B. EvRooms

We collect EvRooms using the DAVIS346 camera [85]]
from 19 scenes, with 7 scenes additionally recorded under
low lighting. As explained in Section we obtain the
3D maps by first converting short event streams to im-
ages [|15]] and using an off-the-shelf 3D reconstruction software
COLMAP [77]. The dataset contains pose annotations for
18323 images converted from events in fast camera motion
(EvRoomsF), along with 5022 images for events captured
in low lighting (EvRooms"). For localization evaluation in
Section we set the Normal split as the four scenes in
DAVIS240C (dynamic_6DoF, poster_6DoF, boxes_6DoF,
office_zigzag). To evaluate localization in more challeng-
ing scenarios, we set the Low Lighting split as the two
scenes in DAVIS240C (hdr_boxes, hdr_poster) along with
EvRooms", and the Fast Motion split as the scenes in
EvRooms". We are planning to release the EvRooms dataset
in public.
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C. EvHumans

For evaluating localization amidst moving people, we use
the newly captured dataset called EvHumans. Similar to
EvRooms, this dataset was captured using the DAVIS346
camera [85] and we obtain the 3D maps using the event-to-
image conversions with COLMAP [77]]. The dataset consists
of 20 scenes with 16 volunteers, where each scene on average
contains 2~3 moving people. Prior to dataset capture, we ob-
tained the consent from all 16 volunteers under the conditions
that the dataset is not made public. We additionally obtained
approval from the volunteers whose faces appear in the paper
figures.

APPENDIX B
SENSOR LEVEL PROTECTION DETAILS

A. Accelerating Filtering

We further reduce the runtime of sensor level protection by
exploiting the fact that the blending process only keeps the
filtered values for pixels with sufficient number of event accu-
mulations. Namely, we sparsely apply the filtering operation
only on the pixel regions where the binary mask in Equation [3]
is non-zero. This simple optimization reduces the runtime
from 4.32 s to 0.15 s for processing 3 x 10° events spanning
approximately 0.45 s. Note that the runtime is measured from
filters implemented using pure Python code, and the process
could be further accelerated by re-implementing the filters with
faster languages such as C++.

B. Justification of Median Filtering

Among the two voxel filtering steps, median filtering at-
tenuates temporally inconsistent voxel regions. Here we give
a mathematical justification of median filtering based on the
event generation equation [0]. First, let L(u,t) denote the
log intensity at pixel u in time ¢. Then, assuming constant
illumination and motion, we can write the event accumulation
from a short time interval [t — At,¢] as follows [6],

AL(u,t) = VL(u,t) - vAL, @)

where v is the apparent velocity at each pixel (optical flow).
Similarly, the event accumulations over a short time At for
the neighboring timestamps ¢ + At could be expressed as
AL(u,t£At) = VL(u,t£At)-vAt. Using Taylor expansion
and the constant velocity/illumination assumption, we have

L(u,t £ At) = L(u F VAL, t), (8)
L(uFvAt,t) = L(u,t) F VL(u,t) - vAL. )

By applying Equation [0 on Equation [7] we have
VL(u,t+ At) = VL(u,t) F V2L(u,t) - vAt, (10)

AL(u,t + At) = AL(u,t) Fv - V>L(u,t) - v(At)?, (11)

which indicates that in regions with constant velocity and
illumination, the event accumulations are either monotone
increasing or decreasing for a short period of time. Therefore,
applying median filtering on voxels can preserve the accumula-
tion values for temporally consistent regions while perturbing
the values for other regions.

C. Justification of Maximum-Reflection Filtering

In maximum-reflection filtering we use the fact that pixels
near straight edges have image gradient magnitudes |V L(u, t)]
that are line symmetric. Since the pixel velocity v for static
objects are near constant under a moving camera, the event
equation in Equation[7]implies that the event accumulations are
nearly symmetrical (Figure [5}(b)). Thus, events near straight
edges are preserved while those at curvy regions are obfus-
cated. Although curvy regions do not necessarily correspond to
faces, faces are mostly composed of curvy regions. Therefore
this filtering provides a conservative way to obfuscate faces,
at the cost of slight decrease (I cm, 0.3° from Table in
localization performance.

APPENDIX C
EXPERIMENT DETAILS

A. Event Voxels for Image Conversion

In all our experiments we first package the input events
to event voxel grids and apply event-to-image conversion
methods [15]], [18]. Given an event stream & spanning AT
seconds, the event voxel is defined by taking weighted sums
of event polarities within spatio-temporal bins. Formally, each

entry of the event voxel £ € REXH*W ig given as follows,
E(l,m,n)= > pimax(0,1—|n—t;]),  (12)
Yi=m
where t7 = B=L(t; — to) is the normalized event timestamp.

For all our experiments, we set the number of temporal bins
for the event voxel as B=50.

B. Localization Evaluation

1) Query/Reference Split: We explain the query and refer-
ence sets for evaluating localization. Recall from Section
that we build the 3D map from events-to-image conversions
in the reference set and measure localization accuracy using
the query set. For evaluation in EvRooms and DAVIS240C, we
use the first 70% of the event streams for reference and the rest
for querying. On the other hand for EvHumans, we randomly
slice 70% of the event streams for reference and the rest for
querying. The distinction is made for EvHumans because the
dataset does not contain significant visual overlaps between
the frontal and latter events as the capturing was made while
constantly tracking the humans close by.

2) Baselines: In Section we consider nine base-
lines for event-based visual localization: direct methods
(PoseNet [46], SP-LSTM [40], AECRN [23]])), and structure-
based methods taking as input various event representations
(binary event image [22], timestamp image [88]) or light-
weight image reconstructions from events (Scheerlink et
al. [89]], Zhang et al. [90]]). All the direct methods are trained
to directly regress the 6DoF pose within a scene, and needs to
be re-trained for each scene. We train the networks separately
for each scene in DAVIS240C [84], using the events in the
reference split. Here the pose annotations from the 3D map are
used to ensure that the network pose predictions are consistent
with our method’s prediction. The networks are all trained for
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1400 epochs using a batch size of 20 and a learning rate of
le—4 with Adam [92].

The structure-based methods are contrived baselines that
either directly package the input events for localization or
leverage simple optimization techniques for converting events
to images. Two conventional packaging methods are tested,
namely the binary event image caching the pixel-wise event
occurrences and timestamp image [88] caching the pixel-
wise most recent event timestamps. In addition, we consider
two optimization-based image conversion methods, where
Scheerlinck et al. [|89]] performs numerical integration on event
polarities and Zhang et al. [90] performs linear programming
for image reconstruction. We use the poses from the 3D maps
built from event-to-image conversions, but replace the images
to corresponding input representations during localization.

C. Network Level Privacy Protection Evaluation

1) Evaluation Protocol: We elaborate on evaluating net-
work level privacy protection, where the evaluation process
is summarized in Figure [A.T] We use the 6 scenes from
DAVIS240C [84] as in Section [VII-B] and first conduct user-
side private re-training for each scene (Figure Evaluation
Setup). Here we train each conversion network using the
events from the reference set described in Appendix
After this, using the shared weights Fg/, we conduct server-
side reverse engineering with general scenes, namely 3,000
event sequences each spanning 2 seconds generated from the
MS-COCO dataset [81]] following [15], [18]. We find that
fine-tuning the shared weights improved attack performance
compared to freezing them, so we report the results from
fine-tuning. Then, we train the frontal layer inversion network
G that takes the frontal activations of the publicly available
network as input and learns to regress the original event
voxel (Figure [A.T} Evaluation Type 1). We use the UNet
architecture [[111] to implement G¢ and use events from MS-
COCO dataset [81]. Finally, to make attacks for each scene
we swap the weights during split inference using the original
network weights © or the reverse engineering weights ©’
(Figure Evaluation Type 2). Note for the frontal layer
inversion attack we take the shared intermediate activation and
apply the inversion network G's to recover the original event
voxel. The result is then fed to the reconstruction network Fg
to obtain the recovered image.

2) Network Re-training Procedure: We describe the de-
tailed steps on re-training neural networks in the user side for
network-level protection. First, the user residing in a private
scene collects a small set of event camera data (approximately
spanning 1 minute) and converts the raw events to voxels
for re-training following Equation Then, the user trains
the randomly initialized reconstruction network using the
training objectives from Equation [3 and (] which includes
the noise watermark added to each training sample. Finally,
the user shares the intermediate part of the trained network
with the service provider. During inference, given a stream
of events, the user first performs inference with the frontal
layer and sends the results to the service provider (Figure
Evaluation Type 2). The service provider then performs the

TABLE A.1
COMPUTATION COST COMPARISON OF RE-TRAINING E2VID [[15] FOR
PRIVACY PROTECTION AGAINST THE ORIGINAL SETUP AND
POSENET [46]], A LEARNING-BASED EVENT LOCALIZATION METHOD. THE
TRAINING TIME FOR E2VID (ORIGINAL) IS OMITTED AS THE TRAINING
CODE IS NOT PUBLICLY AVAILABLE.

E2VID [15]

E2VID [15] |
Method ‘ (Original) (Private) PoseNet [46]
Event Duration (s) 2000.00 70.70 70.70
Number of Epochs 160 10 1400
Training Time (hr) N/A 0.5 48

intermediate layer inference and returns the result to the user.
The user finally performs the lateral layer inference to obtain
the image reconstruction.

3) Re-training Overhead Quantification: We provide a
quantification of the re-training process for network-level pro-
tection from Section[V] Table[A.T|shows the training data char-
acteristics (average duration of event data, number of epochs,
and training time) of our retraining scheme compared against
the original training setup of E2VID [[15] and PoseNet [46], a
learning-based localization algorithm. Our retraining is done
for 10 epochs in all experiments, which takes on average 0.5
hours using an RTX 2080 GPU and 3 hours using an Intel
Core i7-7500U CPU. Further, the training process consumes
on average 178.63 W on the GPU and 52.75 W on the CPU. In
addition, the amount of event data used for training our event-
to-image conversion network is much smaller than the original
setup for training E2VID: approximately 1 minute of event
camera data is required. Therefore, our retraining scheme can
operate quickly compared to other methods. Further, note that
the retraining process is a one-time operation for each private
scene: once the network is retrained, it can be continuously
deployed within the same scene for visual localization.

D. Sensor Level Privacy Protection Evaluation

1) Group Re-Identification Evaluation Protocol: We elab-
orate on the details of the grouped face re-identification task
from Table [Tl and Section We first divide the faces
of volunteers in EvHumans to disjoint groups and apply face
re-identification [96] on the detected faces to check whether it
belongs to a certain group or not. To elaborate, we first run face
detection [93] on the non-filtered reconstructed images and
obtain the bounding boxes for the detected faces. We then use
the bounding boxes to crop facial regions in the filtered image
reconstructions similar to the image sharpness evaluation.

For each scene, we make two groups G, containing the faces
of all the people appearing in the scene and G, containing
the faces of the remaining people. Then we further split G,
into two groups G, Git with G containing the first 80% of
the faces and G**' containing the rest. Finally, for each face in
Gt we (i) extract the ArcFace [96] descriptor and compare
against the descriptors extracted for faces in Q’i‘;f and Gy, and
(ii) choose the group with the smallest L2 descriptor distance.
We finally measure the ratio of predictions with the correct
group re-identifications.

2) Comparison against Gaussian and Mean Filtering: We
make comparisons against more simpler design choices for
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Fig. A.1. Evaluation procedure of network level privacy protection. Evalua-
tion Setup: For each tested scene, we first train two sets of neural networks:
private re-training in the user side (left) and reverse engineering in the service
provider side (right). Evaluation Type 1: For frontal layer inversion attack,
the service provider trains a network that learns to recover the original event
voxel from intermediate layer activations. The recovered voxels are then fed
to an event-to-image conversion network for evaluation. Evaluation Type
2: Then, to evaluate swapping weight and reverse engineering attacks we
perform inferences using network weights available to the service provider.
Specifically, the frontal layer activations (dashed line box) are decoded using
the two types of weights available to the service provider at various swapping
locations: publicly available weights (gray) for swapping weight attacks and
reverse engineered weights for reverse engineering attacks (light orange).

TABLE A.2
PRIVACY PROTECTION COMPARISON AGAINST SIMPLE FILTERING
METHODS, NAMELY GAUSSIAN AND MEAN FILTERING.

Method \ t-error  R-error  Acc. \ # of Faces  Sharpness  Re-ID Acc.
No Filtering 0.04 0.99 0.84 1034 0.0956 0.9387
Gaussian Filtering 0.11 2.85 0.42 55 0.0341 0.4151
Mean Filtering 0.04 1.12 0.77 372 0.0449 0.5755
Ours | 005 1.28 0.73 | 192 0.0475 0.5377

voxel filtering, namely Gaussian and mean filtering. The fil-
tering operations are performed with a spatio-temporal kernel
size of 5x5x5, and the blending operations is kept identically
as our sensor level protection method. Note the hyperparam-
eters for filtering were chosen to attain the optimal balance
between privacy and localization performance. The results are
summarized in Table [A.2] Gaussian filtering results in harsher
removal of feature points and incurs large drop in localization
accuracy. Mean filtering on the other hand shows smaller
localization performance drop but fails in protecting facial
information which could be indicated from the large number of
face detections. Our method better balances between privacy
protection and localization performance preservation.

3) Additional Ablation Study: We conduct an additional
ablation study on the effect of various hyperparameters on

TABLE A.3
EVALUATION ON THE EFFECT OF VARIOUS HYPERPARAMETERS ON
MEDIAN (MED.) AND MAXIMUM-REFLECTION (MAX-REF.) FILTERS FOR
SENSOR-LEVEL PROTECTION PERFORMANCE.

Method Med. Max-Ref. Voxel Loc. # of

etho Filter Size  Filter Size  Blending | Acc. Faces
w/o Voxel Blending 13 23 X 0.64 106
w/ Larger Med. Filter 21 23 O 0.71 185
w/ Smaller Med. Filter 7 23 O 0.72 210
w/ Larger Max-Ref. Filter 13 31 O 0.72 184
w/ Smaller Max-Ref. Filter 13 11 O 0.75 278
Ours | 13 23 O | 073 192

“I don't think there's a need to hide information other than face
information during the pre-processing.”

“With this preprocessing, it's hard to distinguish the silhouettes of
people, therefore less concerning in the perspective of privacy.”

’

“The reconstructed images absolutely hide the sensitive details.’

“I think people cannot recognize my facial information after
pre-processing takes place.”

“I would feel less insecure with pre-processing since it blurs out the
facial details to the point where individuals are hardly verifiable.”

“[ feel the average person will not be able to recognize the original
face behind the filtered results.”

“Network level privacy protection seems to do a really good job in
hiding the scene details.”

“I think faces are the most ‘unique’ features to recognize a person.
The proposed pre-processing can hide facial landmarks very well. It
would be better if we can also hide gestures and other biometric
features, but they are less ‘unique’ compared to faces.”

“It might be possible to identify someone by his/her unique body
features or personal habits.”

“It can be dangerous if one can reverse the pre-processing, or try to
track someone using gait and gesture information.”

“I’'m not sure if the pre-processing will provide enough protection if
there is something like a ‘color’event camera. It may be more harder
to discern people because all the information is in grayscale.”

Fig. A.2. Positive and negative comments from the user study about our
privacy protection method.

privacy protection and localization performance of sensor-
level protection. Table A.3 summarizes the number of faces
detected, which measures privacy protection, and localization
accuracy under variations in filter size and voxel blending.
We follow the experimental setup from Section [VII-D| for
evaluation. While the performance of our method does not
largely fluctuate by the choice of hyperparameters, our design
choice of setting the median filter size k; = 13, maximum-
reflection filter size ks = 23, and using voxel blending
shows the optimal balance between privacy protection and
localization accuracy.
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E. User Study

1) User Comments: Along with the insecurity scoring, we
requested the users to optionally leave comments about their
evaluations. We share the user comments in Figure [A.2] Over-
all, the positive comments emphasize the fact that for sensor
level protection the facial details are sufficiently removed and
for network level protection the reconstructions successfully
hide the entire user’s view. Nevertheless, there were some
negative comments about the sensor level protection that other
signals such as unique gestures or body features are not
obscured. Devising a privacy protection method that can cover
a wider range of biometric signals is left as future work.

2) Full Survey: We share the full survey content used for
the user study as a separate file survey.pdf. Note that we
showed multiple videos for each scenario in the actual user
study, and for sensor level evaluation we additionally showed
samples of cropped faces reconstructed after processing.
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